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Abstract 

Modified chitosan membrane is one of the promising membranes for 

polymer electrolyte membrane. Chitosan/N-phthaloyl chitosan composite 

membranes were fabricated to obtain high proton conductivity and low 

methanol permeability. Membranes were fabricated by casting method and 

solvent evaporation. Surface morphology, mechanical analysis, methanol 

permeability, and proton conductivity were used to characterize the overall 

properties. FT-IR spectra exhibited the presence of interaction of chitosan and 

n-phthaloyl/chitosan. SEM analysis showed that the surface roughness of 

composite membrane increases as the n-phthaloyl loading increases. The 

highest proton conductivity of synthesized membrane is at 2.4 mS.cm-1 and 

is higher than pristine chitosan membrane at 1.6 mS.cm-1. Moreover, with n-

phthaloyl/chitosan addition, the methanol permeability was also improved. 

The correlation between proton conductivity and methanol permeability in 

composite membranes suggests that the blend has its potential in DMFC 

application.  
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Introduction 

Direct Methanol Fuel Cell (DMFC) is projected 

to become the important fuel cell due to high 

energy density, renewable fuel source, easy 

transport, and simple refuel[1]–[4]. In a DMFC 

system, the proton exchange membrane 

represents a main major component that 

delivers proton from anode to cathode as well as 

to block methanol permeation[1],[5]. The 

characteristics of good proton exchange 

membranes are high proton conductivity, low 

methanol permeability,  great performance for 

thermal, chemical, and mechanical stability[6]–[8]. 

Nafion®, a perfluorosulfonic acid polymer 

membrane, is considered the most preferred 
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DMFC proton exchange membrane for 

years[9],[10] having most of the desired properties 

such as favorable proton conductivity, superior 

thermal, chemical, and mechanical stability[10]–

[12]. Nevertheless, some drawbacks also existed 

like expensive material, high methanol 

permeability, reduced efficiency at low 

humidity, and high temperature[13],[14]. The 

disadvantages of Nafion® membrane have 

inspired the development of alternative 

membrane material integrated with low cost, 

high proton conductivity, and low methanol 

permeability[15],[16].  

The use of natural polymer composite 

membrane has been investigated extensively to 

be applied as proton exchange membrane in fuel 

cells as it has advantageous properties such as 

biodegradable, biocompatible, renewable, 

sustainable, and low cost source[17],[18]. Chitosan 

is one of the natural polymer materials derived 

from chitin which has found a wide range of 

crustacean waste[19]. Membrane from this 

abundantly available material has low methanol 

permeability and cationic polyelectrolyte due to 

the presence of hydroxyl and amine groups[20]. 

However, the very low proton conductivity 

limits its application on a reasonable scale. 

Chemical, a structural modification could be 

used to enhance the properties of chitosan 

membrane[17]. 

The utilization of glycol chitosan as bases on the 

membrane has been investigated. The modified 

chitosan was reported to have improved 

solubility, compatibility, and hydrophobic, 

hydrophilic properties[21]. The use of 

crosslinking agents like sulfuric acid has also 

been studied. Chitosan membrane has lower 

performance than Nafion® membrane mainly 

due to its hydrophobicity and an improvement 

will enhance the ionic conductivity[22]. A 

potential way to raise the hydrophobicity is by 

N phthaloylation process using phthalic 

anhydride addition. The introduction of N-

phthaloyl to the sulfonated polyethersulfone 

was reported to improve proton conductivity 

and reduce methanol permeability[17]. 

In our research, N-phthaloyl/chitosan composite 

and pristine chitosan on a unique composition 

were prepared as the material of the membrane. 

Chitosan N-phthaloyl could promote proton 

transportation due to the contribution of a 

carboxyl group. We investigated membrane 

preparation, fabrication procedures, and 

membrane properties for direct methanol fuel 

cell application. 

Experimental 

Materials 

The chitosan powder was synthesized from 

shrimp shell waste of Litopenaeus vannamei. The 

following reagents were obtained from Merck, 

methanol, acetic acid anhydride, ethanol, N, N - 

dimethylformamide (DMF), cyclohexane, 

sodium hydroxide pellet, and phthalic 

anhydride. Hydrochloric acid and sulfuric acid 

were purchased from local industries. 

Methods 

Chitosan extraction 

Chitosan was produced in three steps[23]. Firstly, 

deproteination step, shrimp shell powder was 

dissolved with stirring in 3.5% NaOH solution at 

65 ºC for 2 h. The sample was washed with 

distilled water until neutral pH and later dried. 

Secondly, de-mineralization step, the dried 

powder was treated by stirring in 1M HCl 

solution at 65 ºC for 30 minutes. The sample was 

washed in distillate water until a neutral pH was 

reached and then dried. This reaction was 

formed chitin. Finally, de-acetylation to remove 

the acetyl group from chitin. 50% NaOH was 

added to chitin with stirring at 120 ºC for 4 h. The 

product was rinsed until neutral pH and dried. 

The product was grinded to obtain chitosan 

powder. 

Synthesis of N-phthaloyl/chitosan 

Chitosan (10 g) and phthalic anhydride (27.6 g) 

were refluxed for 6 h and 130 °C using 

dimethylformamide (DMF) solution in a 

nitrogen environment. The solution was 

precipitated into water ice and later purified 

with ethanol and diethyl ether. The N-

phthaloyl/chitosan synthesized was 

subsequently heated until dried out at 60 °C.
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  Preparation of membrane 

PCh-Ch composite membranes were fabricated 

by evaporation technique. chitosan (2 g) was 

diluted in 80 mL acetic acid solution 2% with 

stirring for 30 minutes. In different parts, 10 mL 

of dimethylformamide was used to dissolve N 

phthaloyl/chitosan at various compositions (25 

and 50 mg/g of chitosan weight). Both 

compounds were blended and agitated for 15 

minutes at room temperature. The blended 

solution was homogenized by a sonicator for 30 

minutes. The solution was prepared in the 

casting method and dried for 3 days at 60 ºC to 

obtain the composite membrane. The composite 

membrane that consists of N phthaloyl/chitosan 

at 25 and 50 mg/g of chitosan weight is 

symbolized with PCh25/Ch and PCh50/Ch, 

respectively. 

Structural characterization (FTIR) 

The membranes were mixed with KBr and 

formed to pellet at room temperature. The 

spectra were evaluated in the wavenumber 

range of 4000-800 cm-1 using Shimadzu 8400. 

Scanning electron microscope studies 

Zeiss Evo Ma10 scanning electron microscope 

was used to record SEM images of the fabricated 

composite membrane surfaces. The analysis was 

carried out under magnification ranging from 

2000x to 3000x. 

Mechanical properties of membranes 

Tensile tests of the synthesized blend 

membranes were carried out using Strograph 

VG10-E at elongation velocity of 100mm.min−1 at 

room temperature. 

Methanol crossover 

The methanol crossover measurement was 

performed by diffusion experiments. The 

diffusion cell was divided into two chambers 

was separated membrane. One chamber was 

filled with 5 M methanol solution and the other 

chamber was filled with deionized water. The 

both of chamber was kept stirring during the 

experiment. The concentration of methanol in 

the deionized water chamber was examined 

every 20 minutes using a pycnometer. The 

methanol crossover values were obtained by 

following equation (1). 

 

CB(t) = 
S

VB

P

L
CA(t-t0)  (1) 

 

where VB is the volume of deionized water, L is 

membrane thickness, CA represents the 

methanol concentration in the deionized water 

chamber, CB represents the methanol 

concentration and P is the methanol crossover 

calculated from concentration change-time line 

slope. 

Proton conductivity 

The proton conductivity of synthesized 

membranes was characterized by the AC 

impedance technique at room temperature. The 

membrane conductivity values were calculated 

as: 

 

σ = 
L

R ×A
  (2) 

 

where σ is the conductivity, A surface area of the 

sample, R resistance, and L sample thickness. 

Results and Disscusion 

FTIR spectroscopy was used to examine 

chitosan powder, N phthaloyl/chitosan powder, 

and composite membranes are shown in Figure 

1. The chitosan can identify by peaks to related 

O-H stretching at 3433 cm-1, C H stretching at 

2887 cm-1, C H stretching at 1653 cm-1, C=O 

stretching at 1595 cm-1, N-H stretching at 1381 

cm-1, and C-N at stretching 1151 cm-1. This is 

supported by analyzed FT-IR spectra of chitosan 

observed by Fernandes Queiroz [24]. Figure 1(a) 

shows the FTIR spectrum of N-

phthaloyl/chitosan. Signal of imide C=O 

stretching vibrations (1774 and 1710 cm-1) could 

be detected in N-phthaloyl/chitosan spectrum. 

This is explained by fact that N 

phthaloyl/chitosan was formed[17]. The IR 

spectra for synthesized membrane with various 
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content of N phthaloyl/chitosan are shown in 

Figure 1(c) and (d). The considerable decrease in 

intensity of the O-bridge stretching in the 

spectrum of N-phthaloyl/chitosan membrane 

indicates that the greater amount of N-

phthaloyl/chitosan affects the crosslinking 

chains in membranes. 

Figure 2 shows SEM photographs of chitosan–

N-phthaloyl/chitosan composite membrane 

with N phthaloyl/chitosan content fabricated 

during this study. The composite membrane 

exhibited a homogeneous structure and rough 

surface in morphology. The homogenous 

structure without interphase separation 

indicated good phase compatibility between 

chitosan and N-phthaloyl/chitosan. The uniform 

distribution has advantages like supplying a 

proton conductivity pathway [25]. The higher 

amount of N-phthaloyl/chitosan was produced 

a rougher surface due to lower crosslinking 

available in the membrane. The crosslinking in 

the proton exchange can lead to decrease 

methanol permeability due to cover porous and 

improve the dense of the membrane[26]. 

The mechanical property of the proton exchange 

membrane is important in DMFC[27]. The Young 

modulus, yield stress, and maximum elongation 

of the blended membrane are showed in Table 1. 

Compared to the membrane of chitosan pristine, 

membranes with N-Phthaloyl/chitosan have 

better mechanical properties. It can be seen that 

yield stress and elongation of composite 

membrane elevated with N phthaloyl/chitosan 

loading. At higher N Phthaloyl/chitosan content 

the blended membrane show improvement in 

Young modulus and the formation of a better 

network leads to higher stress.  

 

 
Figure 1. FTIR Spectra for a) N-phthaloyl/chitosan, b) Chitosan, c) PCh25/Ch, d) PCh50/Ch. 

 

 

Figure 2. SEM images for a) PCh25/Ch, b) PCh50/Ch. 
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  Tabel 1. Mechanical properties of membrane 

Sample 

Young 

Modulus 

(MPa) 

Yield 

Stress 

(MPa) 

Max. 

Elongation 

(%) 

Reference 

PCh25/Ch 96.6 11.1 8.4  

PCh50/Ch 146.0 10.5 5.7  

Chitosan - 6.05 1.5 [28] 

Nafion 115 93.7 19.4 92.2 [29] 

 

 

An increase in Young modulus is caused by the 

excess bond between chitosan and N 

phthaloyl/chitosan in the membrane. The 

reduction in yield stress and elongation are 

attributed to limited chain motion due to the 

existence of the Chitosan - N-Phthaloyl/Chitosan 

complex which decreases the chain flexibility 

and crosslink amount between chitosan 

molecules. The composite membrane with the 

highest content of N phthaloyl/chitosan has a 

higher Young modulus but lower yield stress 

and elongation than that of the composite 

membrane with lower content. The yield stress 

and break elongation of the synthesized 

membrane are lower than Nafion 115. 

The permeability of methanol is an important 

criterion for DMFC application. Methanol 

permeability is the capability to restrict 

methanol as fuel. The drawbacks of high 

methanol permeability in the DMFC system are 

leading to poisoning the cathode catalysts and 

open-circuit potential[30]. The transport of 

methanol from the anode to the cathode by 

diffusion in the membrane leads undesired 

reaction at the cathode catalyst. In this research, 

the methanol permeability of synthesized 

membranes was determined. The methanol 

permeability is shown in Table 2. The greater 

Chitosan/N-Phthaloyl content shows lower 

methanol permeability due to forming of 

hydrophilic channels. 

The proton conductivity of the membrane was 

measured to investigate the contribution of the 

functional group in the membrane to the 

formation of an ionic cluster. The proton 

conductivity values increase with a larger size 

or/and amount of ionic cluster due to elevated 

proton transport. The previous research about 

the addition of Chitosan/N-phthaloyl in SPES 

(sulfonated polyethersulfone) showed that 

Chitosan/N-phthaloyl increased the proton 

conductivity due to the excess the polar group in 

Chitosan/N-phthaloyl which formed 

hydrophilic region in the membrane[17].   

 

Tabel 2. Methanol crossover, proton conductivity, and selectivity of composite membrane 

Membranes 

Methanol 

Permeability 

(cm2 s-1) 

Proton 

Conductivity 

(mS.cm-1) 

Selectivity 

(S.s cm-3) 
Reference 

PCh25/Ch 1.5 x 10-4 2.4 16.2  

PCh50/Ch 2.3 x 10-4 0.2 1.0  

Chitosan 3.8 x 10-7 1.6 9.0 x 103 [6] 

Nafion 117 25.0 x 10-7 31.6 1.26 x 104 [23] 
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The proton conductivity data for composite 

membrane with various concentrations of 

Chitosan/N-Phthaloyl is given in Table 2. The 

results obtained for PCh25/Ch membrane 

exhibit higher proton conductivity than chitosan 

membrane due to the present carbonyl function 

as proton acceptor and ionic cluster. The 

presence of excess N phthaloyl inhibits the 

proton transport due to the high hydrophobic 

phthaloyl group in chitosan phthaloyl and low 

crosslink in the membrane. The high 

hydrophobic in the membrane can disrupt the 

mobility of transport due to absorption of water 

decrease which facilitates proton transport. The 

crosslink in the membrane can be improved by 

the formation of a transport channel. The 

difference of the base membrane component can 

carry different reactions in methanol 

permeability. It showed in Chitosan/N-

phthaloyl in SPES (sulfonated polyethersulfone) 

membrane. The addition of Chitosan/N-

phthaloyl decreased methanol permeability due 

to enhanced tortuosity and blockage of 

membrane pores [17]. 

The selectivity of the composite membrane was 

calculated as the ratio of proton conductivity 

and methanol permeability. The higher 

selectivity is related to the high performance of 

the proton exchange membrane in DMFC 

application[21]. Among all composite membranes 

in this study, PCh25/Ch exhibits the highest 

proton conductivity as well as highest 

selectivity. Compared with the selectivity value 

of chitosan membrane (16.2 S.s cm-3), PCh25/Ch 

has low selectivity. 

Conclusions 

The composite membrane of Chitosan/N-

phthaloyl and chitosan for DMFC was prepared 

and characterized. The composite membrane 

exhibited good mechanical properties due to a 

good network of Chitosan and Chitosan/N-

Phthaloyl. The rough surfaces and high Young 

modulus increase with the increase of 

Chitosan/N-Phthaloyl concentration. The 

highest proton conductivity of membrane 

fabricated is at 2.4 mS.cm-1 and is higher than 

pristine chitosan membrane at 1.5 mS.cm-1. 

CS/PhC(25) demonstrated the highest selectivity 

of all fabricated membranes at 5.627 mS.cm-1. 

The results indicate that the synthesized 

membrane needs to modify with inorganic filler 

or other conductive material for conductivity 

improvement. The crosslinking agent loading is 

necessary to increase elongation break and 

decrease methanol permeability. 
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