OPTIMALISASI TRANSPORT SELEKTIF ION Ni(II) TERHADAP Cd(II) DENGAN ZAT PEMBAWA OKSIN MELALUI TEKNIK MEMBRAN CAIR FASA RUAH SECARA SIMULTAN

Vera Tri Ningsih, Admin Alif, Hermansyah Aziz

Abstract

 

 

ABSTRACT

 

The selective transport of Ni(II) to Cd(II) through simultaneously liquid membrane technique has been investigated. The cell membrane was made by mixturing Ni(II) and Cd(II) ions at concentration as 3.41x10-4 M and 1.78x10-4 M respectively as source phase, oxine in chloroform as membrane phase and Na2EDTA solution as receiving phase. Concentration of recidual Ni(II) and Cd(II) ions in source phase transported to receiving phase was measured by Atomic Absortion Spectrofotometry (AAS). The results showed the at optimum condition of Ni(II) and Cd(II) transport occurred at source phase of pH 7, oxine concentration 0.001 M in chloroform and 0.04 M Na2EDTA solution pH 7. In this condition, Ni(II) and Cd(II) transport selectivity was found 80.89%. From the experiment, it was found that the transport rate constant from source phase to membrane phase (k1) for Ni(II) (0.7544 per hour) smaller than Cd(II) (1.3800 per hour ), on the other hand the transport rate constant from membrane phase to receiving phase (k2) Ni(II) (2.7580 per hour) greater than Cd(II) (1.3790 per hour). The phase-to-phase transport of Ni(II) and Cd(II) was consecutive first order reaction. 

 

Keywords : bulk liquid membrane, oxine, technique

 

   

Full Text:

PDF

References

C.A. Molina, L. Victoria and J. A. Ibanez, Characterization Membrane System. Complex Character of Permeability from Electric Model. J. Phys. Chem., 101: 10323-10331, (1997).

M. Mulder, Basic Principle of Membrane Technology, Kluwer Academic Publisher, Do Rsrecht, 1991, 244-249.

A. Safavi, E. Shams, Selective and Efficient transport of Hg(II) through Bulk Liquid Membrane Using Methyl Red as Carrier, J. Membr. Sci., 144: 37-43, (1998).

Ulewicz, Mobgorzata, W. Walkowiak, Separation of Zinc and Kadmium Ions from Sulfate Solution by Ion Flotation and Transport Through Liquid Membranes, Physicochemical Problems of Mineral Processing, 2003, 37: 77-86.

C. Aydiner, M. Kobya, E. Demirdas, Cyanide Ions Transport from Aqueous Solution by Using Quaternary Ammonim Salts Through Bulk Liquid Membrane, Desalination, 180: 139-150, (2005).

A. O. Saf, S. Alpaydin, A. Sirit, Transport Kinetics of Chromium (VI) Ions Through a Bulk Liquid Membrane Containing p-tert-Butil Calix[4] arene 3-Morpholino Propyl Diamide Derivative, J. Membr. Sci., 283: 445-448, (2006).

G. R. Leon, D. los Santos, and M. A. Guzman, Reduction of Sodium and Chloride ion Content in Aqueous Solutions by Bulk Liquid Membranes: a Kinetic Approach, Desalination, 168: 271-275, (2004).

I. A. Vogel, Buku Ajar Vogel: Kimia Analisis Kuantitatif Anorganik, terjemahan A. Hadyana dan Harmita, 4, Penerbit Buku Kedokteran, 1994, 304-312.

A. Alif, O. N. Tetra, H. Aziz, dan Emriadi, Pengaruh ion Cd(II) dan Fe(II) Terhadap Transpor Cu(II) Melalui Teknik Membran Cair Fasa Ruah, J. Kimia Andalas, 11(1): 6-9, (2005).

A. Alif, A. Amran, H. Aziz, dan E. Pelita, Permiasi Ni(II) Melalui Membran Cair Fasa Ruah dengan Oksin sebagai Pembawa, J. Kimia Andalas, 7(2): 61-79, (2001).

L. Longquan, W. Cheng, dan L.Yadong, Separation of Cobalt and Nickel by Emulsion Liquid Membrane with the Use of EDTA as Masking Reagent. J. Membr. Sci., 135: 173-177, (1997).

J.A. Dean, Lange’s Handbook of Chemistry, 3th.Ed. Mc Graw Hill, 1985.

S. Altin, N. Demircioglu, I. Peker, dan A. Altin, Effects of Acceptor Phase and Donor Phase Properties on Sodium Ions Transport from Aqueous Solutions Using Liquid Membrane Systems, J. Colloids and Surfaces, 14369: 1-8, (2007).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM