Penerapan Kolom Adsorpsi Seri dengan Adsorben Sekam Padi pada Penyisihan Logam Seng (Zn) dari Air Tanah

Shinta Indah, Denny Helard, Dian Ramadhan


To increase the performance of continuous adsorption with rice husks as adsorbent in Zn removal from groundwater, a series of fixed bed column was applied. The experiments were carried out at the acrylic columns having diameter of 7 cm, column height of 19.5 cm, bed height of 13.5 cm and flow rate of 2 gpm/ft2 (310 mL/minute) for 540 minutes. The number of columns used were 3 columns arranged in series and the rice husk used were in their original size (1-2 mm). The influent concentration of Zn metal was 7.62 mg/L. The results showed that the use of column adsorption in series increased the removal efficiency of Zn by rice husks, from 33.21% using 1 column to 51.70% with 3 columns. The adsorption capacity of Zn obtained when using 3 columns in series was 3.542 mg/g. In addition, the use of adsorption columns in series can also prolong the saturation of the adsorbent, thereby extending its service life. The overall research results demonstrated that column the adsorption in series with rice husk as an adsorbent has the potential to be applied to remove heavy metals from groundwater.


Column adsorption; Groundwater; Rice husk; Zinc

Full Text:



Sen, T. K. & Gomez, D., Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination, 267(2–3): 286–294 (2011).

Bhattacharya, A. K., Mandal, S. N. & Das, S. K., Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J., 123(1–2): 43–51 (2006).

Yudo, S., Kondisi Pencemaran Logam Berat Di Perairan Sungai DKI Jakarta. J. Air Indones., 2(1): 1–15 (2018).

Vendini, Z. A., Studi Regenerasi Adsorben Batu Apung Sungai Pasak Pariaman yang Telah Dimodifikasi dengan Pelapisan Mg untuk Menyisihkan Logam Seng (Zn) dari Air Tanah. Universitas Andalas, (2019).

Widowati, Wahyu, Sationo A., Y. R., Efek Toksik Logam. Badan Litbangkes-Kementrian Kesehatan RI, (2008).

Montgomery, J. M., Water treatment: principles and design. John Wiley & Sons, (1985).

Reynolds, T. & Richard, P., Unit Operations and Processes in Environmental Engineering. PWS. Publishing Company, (1996).

Vaca Mier, M., López Callejas, R., Gehr, R., Jiménez Cisneros, B. E. & Alvarez, P. J. J., Heavy metal removal with mexican clinoptilolite: Multi-component ionic exchange. Water Res., 35(2): 373–378 (2001).

Rodríguez Rico, I. L., Karna, N. K., Vicente, I. A., Carrazana, R. C. & Ronda, A., Modeling of two up-flow fixed-bed columns in series for the biosorption of Cr6+ and Ni2+ by sugarcane bagasse. Desalin. Water Treat., 56(3): 792–805 (2015).

Ryu, T., Shin, J., Lee, D., Ryu, J., Park, I., Hong, H., Huh, Y. S., et al., Development of multi-stage column for lithium recovery from an aqueous solution. Hydrometallurgy, 157: 39–43 (2015).

Acemioǧlu, B., Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes. Bioresour. Technol., 93(1): 99–102 (2004).

Indah, S., Helard, D. & Sasmita, A., Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution. Water Sci. Technol., 73(12): 2929–2935 (2016).

Munaf, E. & Zein, R., The Use of Rice Husk for Removal of Toxic Metals from Waste Water. Environ. Technol., 18(3): 359–362 (1997).

Abbas, M. N. & Abbas, F. S., Utilization of Iraqi Rice Husk in the Removal of Heavy Metals from Wastewater. Res. J. Environ. Earth Sci., 5(7): 370–380 (2013).

Asif, Z. & Chen, Z., Removal of arsenic from drinking water using rice husk. Appl. Water Sci., 7(3): 1449–1458 (2017).

Zhang, W., Dong, L., Yan, H., Li, H., Jiang, Z., Kan, X., Yang, H., et al., Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column. Chem. Eng. J., 173(2): 429–436 (2011).

Deng, Z. F., Luo, X. G. & Lin, X. Y., Fixed-Bed Column Study for Zn (II) Removal from Solution Using Raw Rice Husk. Adv. Mater. Res., 197: 234–237 (2011).

Barros Júnior, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., & Lobato, A. K. C. L., Biosorption of cadmium using the fungus Aspergillus niger. Brazilian J. Chem. Eng., 20(3): 229–239 (2003).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM