Pembuatan Protokol Penapisan Virtual Berbasis Stuktur (pvbs) untuk Identifikasi Ligan Inhibitor Reseptor Platelet-Activating Factor (PAF-r) sebagai Target Terapeutik Asma menggunakan YASARA

Authors

DOI:

https://doi.org/10.25077/jrk.v11i1.346

Keywords:

Asthma, PAF-r, SBVS, in silico, molecular dynamics

Abstract

Platelet-activating factor receptors (PAF-r) is known as one of the receptors that affect asthma, while the Y-21480 ligand is reported as an effective, specific, and active PAF-r antagonist for asthma patients. Research in building structure-based virtual screening protocol (SBVS) for identification of PAF-r ligand inhibitors has been performed, the receptor crystal structure was obtained from the Protein Data Bank (PDB ID: 5zkp), while the ligand used as a leading compound is Y-24180, obtained from U.S. National Library of Medicine. Interactions between ligands and receptors are observed through molecular dynamics simulations using the YASARA program at intervals up to 20 nanoseconds, ligand-receptor binding stability occurs after a time interval of 2 nanoseconds, the lowest ligand-receptor binding energy occurs at a time interval of 1,401 picoseconds. Internal validation by re-docking 1,000 times the ligand to receptor resulted in a value of Root Mean Square Deviation (RMSD) of 0.6037 Å,  confirmed that SBVS protocol was accurately able to reproduce the Y-24180 ligand pose on the 5zkp crystal structure,  the protocol can be used as a new approach for investigation or design of compounds that have therapeutic potential as anti-asthma.

Author Biography

Gerry Nugraha, Farmasi, STIKES ‘Aisyiyah Palembang

Dosen tetap S1 Farmasi Stikes 'Aisyiyah Palembang, sedang menempuh program doktoral di S3 Kimia Universitas Gadjah Mada Yogyakarta.

References

Network, G. A., The global asthma report 2018. Auckland, New Zealand, (2018).

Fergeson, J. E., Patel, S. S. & Lockey, R. F., Acute asthma, prognosis, and treatment. J. Allergy Clin. Immunol., 139(2): 438–447 (2017).

Kemenkes, R. I., Penderita Asma Indonesia. Pus. data dan Inf. kemenkes RI, 1–16 (2019).

Kasperska-Zajac, A., Brzoza, Z. & Rogala, B., Platelet-activating factor (PAF): A review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pat. Inflamm. Allergy Drug Discov., 2(1): 72–76 (2008).

Cuss, F., Dixon, C. . & Barnes, P., Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet, 328(8500): 189–192 (1986).

Kuitert, L. & Barnes, N. C., PAF and asthma—time for an appraisal? Clin. Exp. Allergy, 25(12): 1159–1162 (1995).

Pałgan, K. & Bartuzi, Z., Platelet activating factor in allergies. Int. J. Immunopathol. Pharmacol., 28(4): 584–589 (2015).

Chan-Yeung, M., Lam, S., Chan, H., Tse, K. S. & Salari, H., The release of platelet-activating factor into plasma during allergen-induced bronchoconstriction. J. Allergy Clin. Immunol., 87(3): 667–673 (1991).

Hozawa, S., Haruta, Y., Ishioka, S. & Yamakido, M., Effects of a PAF antagonist, Y-24180, on bronchial hyperresponsiveness in patients with asthma. Am. J. Respir. Crit. Care Med., 152(4): 1198–1202 (1995).

Demopoulos, C. A., Pinckard, R. N. & Hanahan, D. J., Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J. Biol. Chem., 254(19): 9355–9358 (1979).

Demopoulos, C. A., Karantonis, H. C. & Antonopoulou, S., Platelet activating factor—a molecular link between atherosclerosis theories. Eur. J. Lipid Sci. Technol., 105(11): 705–716 (2003).

Tsoupras, A., Lordan, R. & Zabetakis, I., Inflammation, not cholesterol, is a cause of chronic disease. Nutrients, 10(5): 604 (2018).

da Silva-Jr, I. A., Chammas, R., Lepique, A. P. & Jancar, S., Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis, 6(1): e296–e296 (2017).

Lordan, R., Tsoupras, A. & Zabetakis, I., The potential role of dietary platelet-activating factor inhibitors in cancer prevention and treatment. Adv. Nutr., 10(1): 148–164 (2019).

Palur Ramakrishnan, A. V. K., Varghese, T. P., Vanapalli, S., Nair, N. K. & Mingate, M. D., Platelet activating factor: A potential biomarker in acute coronary syndrome? Cardiovasc. Ther., 35(1): 64–70 (2017).

Tsoupras, A. B., Chini, M., Tsogas, N., Fragopoulou, E., Nomikos, T., Lioni, A., Mangafas, N., et al., Anti-platelet-activating factor effects of highly active antiretroviral therapy (HAART): A new insight in the drug therapy of HIV infection? AIDS Res. Hum. Retroviruses, 24(8): 1079–1086 (2008).

Yost, C. C., Weyrich, A. S. & Zimmerman, G. A., The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie, 92(6): 692–697 (2010).

Birkl, D., Quiros, M., García-Hernández, V., Zhou, D. W., Brazil, J. C., Hilgarth, R., Keeney, J., et al., TNFα promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunol., 12(4): 909–918 (2019).

Suvarna, Y., Maity, N. & Shivamurthy, M. C., Emerging trends in retrograde signaling. Mol. Neurobiol., 53(4): 2572–2578 (2016).

Lordan, R., Tsoupras, A., Zabetakis, I. & Demopoulos, A. C., Forty years since the structural elucidation of platelet-activating factor (PAF): Historical, current, and future research perspectives. Molecules, 24(23): (2019).

Cao, C., Tan, Q., Xu, C., He, L., Yang, L., Zhou, Y., Zhou, Y., et al., Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol., 25(6): 488–495 (2018).

Audet, M. & Stevens, R. C., Emerging structural biology of lipid G protein-coupled receptors. Protein Sci., 28(2): 292–304 (2019).

DiMasi, J. A., Hansen, R. W. & Grabowski, H. G., The price of innovation: New estimates of drug development costs. J. Health Econ., 22(2): 151–185 (2003).

Hinchliffe, A., Molecular modelling for beginners. John Wiley & Sons, Ltd, (2005).

Ekins, S., Mestres, J. & Testa, B., In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol., 152(1): 21–37 (2007).

Kagoshima, M., Tomomatsu, N., Iwahisa, Y., Yamaguchi, S., Kawakami, Y. & Terasawa, M., Effects of Y-24180, a long-acting and potent antagonist to platelet-activating factor, on immediate asthmatic response in guinea pigs. Pharmacology, 54(1): 1–7 (1997).

Krieger, E., Koraimann, G. & Vriend, G., Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins Struct. Funct. Bioinforma., 47(3): 393–402 (2002).

Schneider, G., De novo molecular design. John Wiley & Sons, Ltd, (2013).

Istyastono, E. P., Construction and optimization of structure-based virtual screening protocols to identify cyclooxygenase-1 inhibitors using open babel, spores and plants. Indones. J. Chem. Vol 12, No 2, (2012). doi:10.22146/ijc.21354

Marcou, G. & Rognan, D., Optimizing fragment and Scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model., 47(1): 195–207 (2007).

Downloads

Published

2020-03-30

How to Cite

Nugraha, G., & Istyastono, E. P. (2020). Pembuatan Protokol Penapisan Virtual Berbasis Stuktur (pvbs) untuk Identifikasi Ligan Inhibitor Reseptor Platelet-Activating Factor (PAF-r) sebagai Target Terapeutik Asma menggunakan YASARA. Jurnal Riset Kimia, 11(1), 35–42. https://doi.org/10.25077/jrk.v11i1.346

Issue

Section

Articles

Citation Check