Anthoni Agustien, Jetty Nurhajati, Linar Z. Udin, Pingkan Aditiawati





Protease alkaline and keratinase are a group of protease enzym which have important value in detergen industry and skin tannery. Brevibacillus agri A-03 is thermophilic bacteria isolate that comes from Ambayan Sumatera Barat hot spring and has the ability to produce protease and keratinase. The purpose of this research is to get protease alkaline and thermostable keratinase from Brevibacilus agri-A03. thermostable enzym is produced from enzym production enzym that contains kasein and keratin at various medium pH, inoculum incubation temperature and medium type. Enzym activity is measured by modified Walker methode, protein content is measured by Lowry methode. Protease alkaline is produced at exponential phase, maximum at 18th hours of incubation and keratinase is produced at stationer phase, maximum at 22nd hours. Both enzym is produced optimically at medium pH condition 9.0; incubation temperature 55°C, inoculum 5% by using modified Johnvesly and Naik medium with each protease and keratinase specific activity 1.927 and 1.047 U/mg 


Keywords: Protease alkaline, Keratinase, Thermofilic, Brevibacillus agri A-03


Full Text:



A. N. Souza, and M.L.L. Martins, Isolation, properties and kinetics of growth of a thermophilic Bacillus, Brazillian J. Microbiology, 32(4), (2001).

M. T. Suhartono, Protease, PAU Bioteknologi IPB, Bogor, 1991.

M. Schallmey, A. Singh and O. P. Ward, Developments in the use of Bacillus species for industrial production, Canadian J. Microbiology, 50: 1-17, (2003).

B. Johnvesly, and G. R. Naik, Study on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB99 in a chemically defined medium, J. Process Biochem., 37: 139-144, (2001).

M. B. Rao, A. M. Tanksale, M. S. Gahtge and V. V. Deshpande, Moleculer and biotechnological aspects of microbial proteases, Microbiology Biology Review, 62: 597-635, (1998).

H.A. El-Refai, M.A. Abdelnaby, A. Gabala, M. H. El-Araby and A.F.A. Fattah, Improvement of the newly isolated Bacillus pumilus FH9 keratinolyti activity, Process Biochem., 40: 2325 – 2332, (2005).

A. Agustien, Isolasi dan Identifikasi Bacillus spp. Proteolitik dan Keratinolitik dari Sumber Air Panas Sumatera Barat, J. Biospectrum, 6(1): 26 – 33, (2010).

W. Crueger, and A. Crueger, A Text Book of Industrial Microbiology, Ed. T.D. Brock, Sinauer Associates Inc, New York, 1984.

Y. Y. Feng, W.B. Yang S. L. Ong and J.Y. Hu, Fermentation of starch for alkaline protease production by constructing an alkalophilic Bacillus pumilus strains, Appl. Microbiology Biotech., 57: 153 – 160, (2001).

C. G. Kumar, and H. Takagi, Microbial alkaline proteases from a bioindustrial viewpoint, Biotechn. Advance, 17, 561-594, (1999).

S.W. Cheng, H.M. Wu, S.W. Shen, H. Takagi, M. Asano and Y.C. Tsai, Production and characterization of keratinase of a feather degrading B. licheniformis PWD-1, Biosience, Biotech. and Biochem., 59: 2239 – 2243, (1995).

C. Cai, , B. Lou and X. Zheng, Keratinase production and keratin degradation by mutant strains of Bacillus subtilis, J. of Zhejiang University Sci. B., 9: 60 – 67, (2008).

S. Sivasubramanian, B.M. Manohar, A. Rajaram and R. Puvanakrishnan, Eco-friendly lime and sulfide free enzymatic dehairing of skins and hides using a bacterial alkaline protease, Chemosphere, 70: 1015-1024, (2008).

H. J. Son, G. T. Park and Y. G. Kim, Production of a keratinolytic protease by a feather-degrading bacterium, Bacillus megaterium F7-1, Korea J. Microbiology, 40: 43-48, (2004).

K. Todar, The Genus Bacillus, Todar’s online textbook of bacteriology, University of Wisconsin-Madison, Madison, 2009.

R. Gupta, and P. Ramnani, Microbial keratinase and their prospective application: an overview, Applied Microbiology Biotech., 70(1): 21-33 (2006).

Rodziewicz and W. Laba, Biodegradation of feather keratin by Bacillus cereus in pure culture and compost, Electronic J. Agricultural Universities, 11(2), (2008).

D.J. Daroit. A.P.F. Correa and A. Brandelli, Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus meso-potamicus, International Biodeteriration & Biodegradation, (in press), 1 – 6, (2009).

A. N. Glazer, and H. Nikaido, Microbial enzyme in: Microbial Technology, Fundamentals of Applied Microbiology, W.H. Freeman and Company, New York, 1995.

K. Rao, and M. L. Narasu, Alkaline protease from Bacillus firmus 7728, African J. of Biotechn., 6(21): 2493-2496, (2007).

N. Shafee, S. N. Aris, R.N.Z.A. Rahman, M. Basri and A.B. Saleh., Optimization of environmental and nutritional conditions for the production of al- kaline protease by a newly isolated bacterium Bacillus cereus strains 146, J. Applied Sci. Research, 1(1): 1-8, (2005).

P.F. Stanbury, and A. Whitaker, Principles of Fermentation Technology, Pergamon Press, Oxford, 1984.

W. Suntornsuk, and Suntornsuk, L, Feather degradation by Bacillus sp. FK 46 in submerged cultivation, Bioresource Techn., 86(3): 239-243, (2003).

N. A. Klimov, V. T. Batarin, O. V. Rybalchenko and O. A. Andreev, Formation of extracellular protease by cells of thermophilic bacteria, Microbiology, 57: 579-585, (1988).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM