Black Water Purification by Activated Carbon from Ilalang Weeds (Imperata cylindrica) Adsorbent in Peatland Rural Area

Authors

  • Ngatijo Ngatijo Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
  • Heriyanti Heriyanti Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
  • Winda Arinda Putri Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi, Indonesia
  • Aslan Irunsah Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumny Forum (FAMK), Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Bayu Ishartono Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumny Forum (FAMK), Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Rahmat Basuki Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Universitas Pertahanan RI, West Java, Indonesia

DOI:

https://doi.org/10.25077/jrk.v13i1.449

Keywords:

activated carbon, adsorption, H3PO4 activator, humic acid (HA), low-cost adsorbent

Abstract

The black water containing humic acid, HA in peat land rural area is a serious issue. This study aims to synthesis of activated carbon, AC from Ilalang Weeds, IW (Imperata cylindrica) as low-cost adsorbent for HA. The success AC synthesis by H3PO4 activator from IW was evidently characterized by Fourier Transform Infra-Red, FTIR and Scanning Electron Microscopy, SEM. The effects of pH solution, initial HA concentration, and contact time were systematically studied to investigate the performance of Activated Carbon from Ilalang Weeds, ACIW. The results showed the increasing of Langmuir monolayer capacity of HA adsorption on carbon from IW before (49.75 mg g-1) and after (56.82 mg g-1) activation process at the pH optimum 6.0. The equilibrium adsorption data fitted with the isotherm model was shifted from multilayer Freundlich model (CIW) into monolayer Langmuir model as the consequences of increasing pore diameter size and active sites intensity. Calculation of adsorption energy by Dubinin-Radushkevich (EDR) model, 0.50 and 2.24 kJ mol-1 for CIW and ACIW, respectively, showed the increasing of physical affinity of HA with the active sites of adsorbent. Adsorption kinetics showed that the adsorption behavior followed the Ho pseudo-second-order kinetic model. The experimental results of this work demonstrate that the ACIW can be used as a promising low-cost adsorbent for HA removal for clean water production in peat land rural area. 

Author Biographies

Ngatijo Ngatijo, Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi

Department of Chemistry, Faculty of Science and Technology, University of Jambi

Heriyanti Heriyanti, Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jambi

Department of Chemistry, Faculty of Science and Technology, University of Jambi

Aslan Irunsah, Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumny Forum (FAMK), Universitas Gadjah Mada, Yogyakarta

Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumni Forum (FAMK), Universitas Gadjah Mada, Yogyakarta

Bayu Ishartono, Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumny Forum (FAMK), Universitas Gadjah Mada, Yogyakarta

Bureau of School Curriculum Analysis, Design, and Interpretation, Master of Chemistry Alumny Forum (FAMK), Universitas Gadjah Mada, Yogyakarta

Rahmat Basuki, Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Universitas Pertahanan RI, West Java

Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Universitas Pertahanan RI, Bogor

References

Chaidir, Z., Hasanah, Q. & Zein, R., Penyerapan ion logam Cr (III) dan Cr (VI) dalam larutan menggunakan kulit buah jengkol (Pithecellobium jiringa (Jack) Prain.). J. Ris. Kim., 8(2): 189 (2015).

Hasnirwan., Aziz, H. & Whulanda, R., Sistem biofiltrasi air rawa gambut dan pengaruh filtrasi terhadap pH, BOD, COD, TSS dan asam humat air rawa gambut dengan adanya penambahan karbon. J. Ris. Kim., 3(1): 54 (2015).

Joshi, R., Singh, J. & Vig, A. P., Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol., 14(1): 137–159 (2015).

Zulfikar, M. A. & Setiyanto, H., Adsorption of humic acid from peat water on pyrophyllite. Int. J. Chem. Environ. Biol. Sci., 1(4): 714–717 (2013).

Luo, X., Liang, H., Qu, F., Ding, A., Cheng, X., Tang, C. Y. & Li, G., Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants. Chemosphere, 200: 237–247 (2018).

Pérez-González, A., Urtiaga, A. M., Ibáñez, R. & Ortiz, I., State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res., 46(2): 267–283 (2012).

Iovino, P., Chianese, S., Canzano, S., Prisciandaro, M. & Musmarra, D., Photodegradation of diclofenac in wastewaters. Desalin. Water Treat., 61(2): 293–297 (2017).

Rusdiarso, B. & Basuki, R., Stability improvement of humic acid as sorbent through magnetite and chitin modification. J. Kim. Sains dan Apl., 23(5): 152–159 (2020).

Chianese, S., Fenti, A., Iovino, P., Musmarra, D. & Salvestrini, S., Sorption of organic pollutants by humic acids: A review. Molecules, 25(4): 918 (2020).

Zulfikar, M. A., Novita, E., Hertadi, R. & Djajanti, S. D., Removal of humic acid from peat water using untreated powdered eggshell as a low cost adsorbent. Int. J. Environ. Sci. Technol., 10(6): 1357–1366 (2013).

Sim, S. F., Lee, T. Z. E., Mohd Irwan Lu, N. A. L. & Murtedza, M., Modified coconut copra residues as a low cost biosorbent for adsorption of humic substances from peat swamp runoff. BioResources, 9(1): 952–968 (2014).

Maulinda, L., Nasrul, Z. A. & Sari, D. N., Pemanfaatan kulit singkong sebagai bahan baku karbon aktif. J. Teknol. Kim. Unimal, 4(2): 11–19 (2017).

Efiyanti, L., Wati, S. A. & Maslahat, M., Pembuatan dan analisis karbon aktif dari cangkang buah karet dengan proses kimia dan fisika. J. Ilmu Kehutan., 14(1): 94–108 (2020).

Erawati, E. & Fernando, A., Pengaruh jenis aktivator dan ukuran karbon aktif terhadap pembuatan adsorbent dari serbik gergaji kayu sengon (Paraserianthes falcataria). J. Integr. Proses, 7(2): 58–66 (2018).

Sari, M. F. P., Loekitowati, P. & Moehadi, R., Penggunaan karbon aktif dari ampas tebu sebagai adsorben zat warna procion merah dari industri songket. J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., 7(1): 37–40 (2017).

Husin, A. & Hasibuan, A., Studi pengaruh variasi konsentrasi asam posfat (H3PO4) dan waktu perendaman karbon terhadap karakteristik karbon aktif dari kulit durian. J. Tek. Kim. USU, 9(2): 80–86 (2020).

Hakim, L. & Sedyadi, E., Synthesis and characterization of Fe3O4 composites embeded on coconut shell activated carbon. JKPK (Jurnal Kim. dan Pendidik. Kim., 5(3): 245–253 (2020).

Nuria, F. I., Anwar, M. & Purwaningsih, D. Y., Pembuatan karbon aktif dari enceng gondok. J. TECNOSCIENZA, 5(1): 37–48 (2020).

Pratama, B. S., Konversi ampas tebu menjadi biochar dan karbon aktif untuk penyisihan Cr (VI). J. Rekayasa Bahan Alam dan Energi Berkelanjutan, 2(1): 7–12 (2018).

Koleangan, H. S. J. & Wuntu, A. D., Kajian stabilitas termal dan karakter kovalen zat pengaktif pada arang aktif limbah gergajian kayu meranti (Shorea spp). Chem. Prog., 1(1): 43–46 (2008).

Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V. & Goranova, M., Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol., 87(10): 899–905 (2006).

Yang, Z., Gleisner, R., Mann, D. H., Xu, J., Jiang, J. & Zhu, J. Y., Lignin based activated carbon using H3PO4 activation. 12(12): 1–16 (2020).

Ngatijo, N., Permana, E., Yanti, L. P., Ishartono, B. & Basuki, R., Remazol briliant blue uptake by green and low-price black carbon from ilalang weeds (Imperata cylindrica) activated by KOH solution. KPK (Jurnal Kim. dan Pendidik. Kim., 6(2): 192–205 (2021).

Basuki, R., Yusnaidar, Y. & Rusdiarso, B., Different style of Langmuir isotherm model of non-competitive sorption Zn(II) and Cd(II) onto horse dung humic acid (HD-HA). AIP Conf. Proc., 2026: 020009 (2018).

Basuki, R., Rusdiarso, B., Santosa, S. J. & Siswanta, D., Magnetite-functionalized horse dung humic acid (HDHA) for the uptake of toxic lead (II) from artificial wastewater. Adsorpt. Sci. Technol., 2021(5523513): 1–15 (2021).

Dubinin, M. M. & Radushkevich, L. V., The equation of the characteristic curve of the activated charcoal USSR. Proc. Acad. Sci. Phys. Chem. Sect., 55: 331–337 (1947).

Lagergren, S., About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24: 1–39 (1898).

Ho, Y. S., McKay, G., Wase, D. A. J. & Forster, C. F., Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol., 18(7): 639–650 (2000).

Rusdiarso, B., Basuki, R. & Santosa, S. J., Evaluation of lagergren kinetics equation by using novel kinetics expression of sorption of Zn2+ onto horse dung humic acid (HD-HA). Indones. J. Chem, 16(3): 338–346 (2016).

Basuki, R., Ngatijo., Santosa, S. J. & Rusdiarso, B., Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA). Bull. Chem. React. Eng. Catal., 13(3): 475–488 (2018).

Ngatijo, N., Basuki, R., Rusdiarso, B. & Nuryono, N., Sorption-desorption profile of Au (III) onto silica modified quaternary amines (SMQA) in gold mining effluent. J. Environ. Chem. Eng., 8(3): 103747 (2020).

Ngatijo, N., Gusmaini, N., Bemis, R. & Basuki, R., Adsorpsi methylene blue pada nanopartikel magnetit tersalut asam humat: kajian isoterm dan kinetika. CHEESA Chem. Eng. Res. Artic., 4(1): 51–64 (2021).

Desi., Suharman, A. & Vinsiah, R., Pengaruh variasi suhu karbonisasi terhadap daya serap karbon aktif cangkang kulit buah karet (Hevea brasilliensis). in Prosiding SEMIRATA 2015 bidang MIPA BKS-PTN Barat, 294–303 (2015).

Esterlita, M. O. & Herlina, N., Pengaruh penambahan aktivator ZnCl2, KOH, dan H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga pinnata). J. Tek. Kim. USU, 4(1): 47–52 (2015).

Mirzapour, P., Kamyab Moghadas, B., Tamjidi, S. & Esmaeili, H., Activated carbon/bentonite/Fe3O4 nanocomposite for treatment of wastewater containing Reactive Red 198. Sep. Sci. Technol., 56(16): 2693–2707 (2021).

Hidayati, A., Kurniawan, S., Restu, N. W. & Ismuyanto, B., Potensi ampas tebu sebagai alternatif bahan baku pembuatan karbon aktif. Nat. B, 3(4): 311–317 (2016).

Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I. & Sillanpää, M., Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett., 18(2): 393–415 (2020).

Hanum, F., Gultom, R. J. & Simanjuntak, M., Adsorpsi zat warna metilen biru dengan karbon aktif dari kulit durian menggunakan KOH dan NAOH sebagai aktivator. J. Tek. Kim. USU, 6(1): 49–55 (2017).

Zam Zam, Z., Limatahu, N. A. & Baturante, N. J., Nitrate adsorption capacity of activated gamalama volcanic ash. JKPK (Jurnal Kim. dan Pendidik. Kim., 6(1): 23 (2021).

Illés, E. & Tombácz, E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci., 295(1): 115–123 (2006).

Weber, T. W. & Chakravorti, R. K., Pore and solid diffusion models for fixedâ€bed adsorbers. AIChE J., 20(2): 228–238 (1974).

Septiani, U., Tasari, F. J. & Zilfa, Z., Adsorpsi asam humat pada zeolit alam yang dimodifikasi dengan TiO2. J. Ris. Kim., 11(1): 43–51 (2020).

Islam, M. A., Morton, D. W., Johnson, B. B. & Angove, M. J., Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Separation and Purification Technology, 247: 116949 (2020).

Li, S., Yang, Y., Huang, S., He, Z., Li, C., Li, D., Ke, B., et al., Adsorption of humic acid from aqueous solution by magnetic Zn/Al calcined layered double hydroxides. Appl. Clay Sci., 188: 105414 (2020).

Yang, K. & Fox, J. T., Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon. J. Environ. Eng., 144(10): 04018104 (2018).

Saha, P., Chowdhury, S., Gupta, S. & Kumar, I., Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin. Chem. Eng. J., 165(3): 874–882 (2010).

Shen, S., Pan, T., Liu, X., Yuan, L., Zhang, Y., Wang, J. & Guo, Z., Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J. Colloid Interface Sci., 345(1): 12–18 (2010).

MacFarlane, R. B., Molecular weight distribution of humic and fulvic acids of sediments from a north Florida estuary. Geochim. Cosmochim. Acta, 42(10): 1579–1582 (1978).

Kara, H., Ayyildiz, H. F. & Topkafa, M., Use of aminoprophyl silica-immobilized humic acid for Cu(II) ions removal from aqueous solution by using a continuously monitored solid phase extraction technique in a column arrangement. Colloids Surfaces A Physicochem. Eng. Asp., 312(1): 62–72 (2008).

Downloads

Published

2022-03-13

How to Cite

Ngatijo, N., Heriyanti, H., Putri, W. A., Irunsah, A., Ishartono, B., & Basuki, R. (2022). Black Water Purification by Activated Carbon from Ilalang Weeds (Imperata cylindrica) Adsorbent in Peatland Rural Area. Jurnal Riset Kimia, 13(1), 12–23. https://doi.org/10.25077/jrk.v13i1.449

Issue

Section

Articles

Citation Check