The Effect Of Sulphur (S) Doping and K+ Adsorption To The Electronic Properties Of Graphene: A Study By DFTB Method


  • Yuniawan Hidayat Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Fitria Rahmawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Eddy Heraldy Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Khoirina Nugrahaningtyas Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • IF Nurcahyo Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia



DFTB, Graphene, S-Graphene, DOS, Band gap


A study on the effect of S doping and K+ adsorption to the electronic properties of graphene has been conducted by DFTB (Density Functional Tight Binding) calculation. The supercell of 40 x 40 x 1 configured from the 4x4x1 unit cell of graphene was optimized. The calculation shows that the Fermi level of graphene shifted from -4.67 eV into -3.57 eV after S doping. In addition, the S presence caused the formation of gap within the Dirac K of valence band and conduction band. Meanwhile, K+ charge distribution was dominantly occurred within the S-graphene than the graphene.


Zhang, L. & Xia, Z., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C, 115(22): 11170–11176 (2011).

Feng, L., Qin, Z., Huang, Y., Peng, K., Wang, F., Yan, Y. & Chen, Y., Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Sci. Total Environ., 698: 134239 (2020).

Ketabi, N., de Boer, T., Karakaya, M., Zhu, J., Podila, R., Rao, A. M., Kurmaev, E. Z., et al., Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Adv., 6(61): 56721–56727 (2016).

Joucken, F., Tison, Y., Le Fèvre, P., Tejeda, A., Taleb-Ibrahimi, A., Conrad, E., Repain, V., et al., Charge transfer and electronic doping in nitrogen-doped graphene. Sci. Rep., 5(1): 14564 (2015).

Li, Y., Wang, G., Wei, T., Fan, Z. & Yan, P., Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 19: 165–175 (2016).

Qie, L., Chen, W. M., Wang, Z. H., Shao, Q. G., Li, X., Yuan, L. X., Hu, X. L., et al., Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater., 24(15): 2047–2050 (2012).

Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., et al., Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem., 21(22): 8038 (2011).

Lu, Z., Li, S., Liu, C., He, C., Yang, X., Ma, D., Xu, G., et al., Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: a DFT-D study. RSC Adv., 7(33): 20398–20405 (2017).

Yang, N., Yang, D., Chen, L., Liu, D., Cai, M. & Fan, X., Design and adjustment of the graphene work function via size, modification, defects, and doping: a first-principle theory study. Nanoscale Res. Lett., 12(1): (2017).

Gholizadeh, R. & Yu, Y. X., Work functions of pristine and heteroatom-doped graphenes under different external electric fields: An ab initio DFT study. J. Phys. Chem. C, 118(48): 28274–28282 (2014).

Ooi, N., Rairkar, A. & Adams, J. B., Density functional study of graphite bulk and surface properties. Carbon N. Y., 44(2): 231–242 (2006).

Khomyakov, P. A., Giovannetti, G., Rusu, P. C., Brocks, G., Van Den Brink, J. & Kelly, P. J., First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B - Condens. Matter Mater. Phys., 79(19): 1–12 (2009).

Spiegelman, F., Tarrat, N., Cuny, J., Dontot, L., Posenitskiy, E., Martí, C., Simon, A., et al., Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv. Phys. X, 5(1): 1710252 (2020).

Poh, C.-K. & Shieh, H.-P. D., Density Functional Based Tight Binding (DFTB) Study on the Thermal Evolution of Amorphous Carbon. Graphene, 05(02): 51–54 (2016).

Zhang, Q., Khetan, A. & Er, S., Comparison of computational chemistry methods for the discovery of quinone-based electroactive compounds for energy storage. Sci. Rep., 10(1): 22149 (2020).

Sengupta, S., Murmu, M., Murmu, N. C. & Banerjee, P., Adsorption of redox-active Schiff bases and corrosion inhibiting property for mild steel in 1 molL−1 H2SO4: Experimental analysis supported by ab initio DFT, DFTB and molecular dynamics simulation approach. J. Mol. Liq., 326: 115215 (2021).

Selli, D., Fazio, G. & Di Valentin, C., Modelling realistic TiO 2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT. J. Chem. Phys., 147(16): 164701 (2017).

Kanematsu, Y., Gohara, K., Yamada, H. & Takano, Y., Applicability of Density Functional Tight Binding Method with Dispersion Correction to Investigate the Adsorption of Porphyrin/Porphycene Metal Complexes on Graphene. Chem. Lett., 46(1): 51–52 (2017).

Fabris, G. S. L., Junkermeier, C. E. & Paupitz, R., Porous graphene and graphenylene nanotubes: Electronic structure and strain effects. Comput. Mater. Sci., 140: 344–355 (2017).

Persson, K., Materials Data on C (SG:194) by Materials Project. (2014). doi:10.17188/1208406

Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., et al., DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 152(12): 124101 (2020).

Momma, K. & Izumi, F., VESTA : a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr., 41(3): 653–658 (2008).

R. Rüger, A. Yakovlev, P. Philipsen, S. Borini, P. Melix, A.F. Oliveira, M. Franchini, T. van Vuren, T. Soini, M. de Reus, M. Ghorbani Asl, T. Q. Teodoro, D. McCormack, S. Patchkovskii, T. H., AMS DFTB. (2021).

Elstner, M. & Seifert, G., Density functional tight binding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 372(2011): 20120483 (2014).

Wang, J., Ma, F. & Sun, M., Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 7(27): 16801–16822 (2017).

Ngoc Thanh Thuy, T., Lin, S.-Y., Lin, C.-Y. & Lin, M.-F., Geometric and Electronic Properties of Graphene-Related Systems. CRC Press, (2017). doi:10.1201/b22450

Tran, N. T. T., Lin, S.-Y., Lin, C.-Y. & Lin, M.-F., Geometric and electronic properties of graphene-related systems: Chemical bondings. Graphene, 05(02): 35–38 (2017).

Zhang, Q., Wang, B. X., Yu, Y. B., Chen, B.-Y. & Hong, J., Sulfur doped-graphene for enhanced acetaminophen degradation via electro-catalytic activation: Efficiency and mechanism. Sci. Total Environ., 715: 136730 (2020).

Denis, P. A., Huelmo, C. P. & Iribarne, F., Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theor. Chem., 1049: 13–19 (2014).

Kaneko, T. & Saito, R., First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene. Surf. Sci., 665: 1–9 (2017).

Peles-Lemli, B., Kánnár, D., Nie, J. C., Li, H. & Kunsági-Máté, S., Some Unexpected Behavior of the Adsorption of Alkali Metal Ions onto the Graphene Surface under the Effect of External Electric Field. J. Phys. Chem. C, 117(41): 21509–21515 (2013).

Liu, D., He, M., Huang, C., Sun, X. & Gao, B., Fermi-Level Dependence of the Chemical Functionalization of Graphene with Benzoyl Peroxide. J. Phys. Chem. C, 121(19): 10546–10551 (2017).

Hassani, F., Tavakol, H., Keshavarzipour, F. & Javaheri, A., A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition. RSC Adv., 6(32): 27158–27163 (2016).

Yuan, J., Dai, J.-Q., Ke, C. & Wei, Z.-C., Interface coupling and charge doping in graphene on ferroelectric BiAlO 3 (0001) polar surfaces. Phys. Chem. Chem. Phys., 23(5): 3407–3416 (2021).

Dimakis, N., Valdez, D., Flor, F. A., Salgado, A., Adjibi, K., Vargas, S. & Saenz, J., Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers. Appl. Surf. Sci., 413: 197–208 (2017).

Denis, P. A., Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett., 492(4–6): 251–257 (2010).

Denis, P. A., Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Comput. Mater. Sci., 67: 203–206 (2013).

Nigar, S., Zhou, Z., Wang, H. & Imtiaz, M., Modulating the electronic and magnetic properties of graphene. RSC Adv., 7(81): 51546–51580 (2017).

Iyakutti, K., Kumar, E. M., Lakshmi, I., Thapa, R., Rajeswarapalanichamy, R., Surya, V. J. & Kawazoe, Y., Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron., 27(3): 2728–2740 (2016).




How to Cite

Hidayat, Y., Rahmawati, F., Heraldy, E., Nugrahaningtyas, K., & Nurcahyo, I. (2022). The Effect Of Sulphur (S) Doping and K+ Adsorption To The Electronic Properties Of Graphene: A Study By DFTB Method. Jurnal Riset Kimia, 13(2), 130–137.




Citation Check