Evaluation of Lipid Profile and Liver Function After Administration of Scenedesmus dimorphus in Obese Mice
DOI:
https://doi.org/10.25077/jrk.v13i2.503Keywords:
Scenedesmus dimorphus, obesity, lipid profile, liver functionAbstract
Obesity is a major public health problem in developing countries and is a significant risk factor for metabolic disorders. Microalgae Scenedesmus dimorphus (S. dimorphus) contains bioactive compounds such as pigment function as antioxidants, and omega-3 and omega-6 PUFAs have potential as nutraceuticals. The study aimed to evaluate the lipid profile and liver function after the administration of S. dimorphus in obese mice. The research design uses mice which are divided into 6 groups; Group 1 (G1) normal control, G2 control Obesity, G3 treatment with Orlistat, G4 treatment S. dimorphus (0.25mg/g BW), G5 treatment S. dimorphus (0.5 mg/g BW) and G6 treatment S. dimorphus (0.75 mg/g BW) each group consisted of 5 mice and 21 days of observation time. The parameters observed were lipid profile and liver function of mice. Based on the results of the study, the effective dose for treating obesity is a dose of S. dimorphus 0.75 mg/g (BW) can reduce cholesterol, triglycerides, and LDL levels, respectively 67.7 mg/dl, 49.2 mg/dl, 10 , 2 mg/dl, and increased HDL, 68.32 mg/dl compared to control of obesity (G2), respectively 108.7 mg/dl, 139.1 mg/dl, 20.6 mg/dl and HDL 60, 28 mg/dl, this dose is also effective for improving the function of blood pressure by reducing AST and ALT 15.6 U/L and 18.8 U/L, respectively, compared to the obesity group (G2), which is 26.6 U/L, and 29,7 U/L. Based on the results of the study it can be concluded that S. dimorphus is useful for anti-obesity for mice (Mus musculus).
References
Fauci, A. S., Braunwald, E., Kasper, D. L., Hauser, S. L., Longo, D. L., Jameson, J. L. & Loscalzo, J., Harrison’s Principles of Internal Medicine, 17th Edition (Harrison’s Principles of Internal Medicine (Single Vol.)). Mc Graw Hill Medical, 2: (2008).
Matsuzawa, Y., The metabolic syndrome and adipocytokines. FEBS Letters, 580(12): 2917–2921 (2006).
Eckel, R. H., Grundy, S. M. & Zimmet, P. Z., Seminar The metabolic syndrome. www.thelancet.com, 365: (2005).
Lee, S.-I., Kim, J.-W., Lee, Y.-K., Yang, S.-H., Lee, I.-A., Suh, J.-W. & Kim, S.-D., Anti-obesity Effect of Monascus pilosus Mycelial Extract in High Fat Diet-induced Obese Rats. J. Appl. Biol. Chem., 10(7): (2011).
Angelico, F., Del Ben, M., Conti, R., Francioso, S., Feole, K., Maccioni, D., Maria Antonini, T., et al., Non-alcoholic fatty liver syndrome: A hepatic consequence of common metabolic diseases. J. Gastroenterol. Hepatol., 18(5): 588–594 (2003).
DeFronzo, R. A. & Ferrannini, E., Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care, 14(3): 173–194 (1991).
Fabbrini, E., Sullivan, S. & Klein, S., Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology, 51(2): 679–689 (2010).
Carneiro, G., Faria, A. N., Ribeiro Filho, F. F., Guimarães, A., Lerário, D., Ferreira, S. R. G. & Zanella, M. T., Influence of body fat distribution on the prevalence of arterial hypertension and other cardiovascular risk factors in obese patients. Rev. Assoc. Med. Bras., 49(3): 306–311 (2003).
Armaini, A., Dharma, A. & Salim, M., The nutraceutical effect of Scenedesmus dimorphus for obesity and nonalcoholic fatty liver disease-linked metabolic syndrome. J. Appl. Pharm. Sci., 10(5): 070–076 (2020).
Marchesini, G., Brizi, M., Blanchi, G., Tomassetti, S., Bugianesi, E., Lenzi, M., McCullough, A. J., et al., Nonalcoholic Fatty Liver Disease: A Feature of the Metabolic Syndrome. Diabetes, 50(8): 1844–1850 (2001).
Fisher, C. P., Kierzek, A. M., Plant, N. J. & Moore, J. B., Systems biology approaches for studying the pathogenesis of non-alcoholic fatty liver disease. World J. Gastroenterol., 20(41): 15070–15078 (2014).
Pardina, E., Baena-Fustegueras, J. A., Catalán, R., Galard, R., Lecube, A., Fort, J. M., Allende, H., et al., Increased Expression and Activity of Hepatic Lipase in the Liver of Morbidly Obese Adult Patients in Relation to Lipid Content. Obes. Surg., 19(7): (2009).
Stranges, S., Trevisan, M., Dorn, J. M., Dmochowski, J. & Donahue, R. P., Body fat distribution, liver enzymes, and risk of hypertension: Evidence from the Western New York Study. Hypertension, 46(5): 1186–1193 (2005).
Das, A. K., Chandra, P., Gupta, A. & Ahmad, N., Obesity and the levels of liver enzymes (ALT, AST & GGT) in East Medinipur, India. Asian J. Med. Sci., 6(1): 40–42 (2014).
Gammone, M. A. & D’Orazio, N., Anti-obesity activity of the marine carotenoid fucoxanthin. Marine Drugs, 13(4): (2015).
Hu, X., Tao, N., Wang, X., Xiao, J. & Wang, M., Marine-derived bioactive compounds with anti-obesity effect: A review. Journal of Functional Foods, 21: 372–387 (2016).
Armaini., Salim, M. & Pribadi, P., Induction effect of microalgae Scenedesmus dimorphus against hematology on mice (Mus musculus) suffering anemia diseases. Asian J. Pharm. Clin. Res., 11(7): 348–352 (2018).
Chu, W. L., Lim, Y. W., Radhakrishnan, A. K. & Lim, P. E., Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complement. Altern. Med., 10: 53–63 (2010).
Armaini, A. & Imelda, I., The protective effect of Scenedesmus dimorphus polysaccharide as an antioxidant and antiaging agent on aging rat model induced by D-galactose. J. Appl. Pharm. Sci., 11(5): 054–063 (2021).
Babcock, T., Helton, W. S. & Espat, N. J., Eicosapentaenoic acid (EPA): An antiinflammatory ω-3 fat with potential clinical applications. Nutrition, 16(11–12): (2000).
Howe, P. R. C., Dietary fats and hypertension - Focus on fish oil. Ann. N. Y. Acad. Sci., 827: 339–352 (1997).
Krishna Mohan, I. & Das, U. N., Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition, 17(2): 126–151 (2001).
Schmidt, E. B., Skou, H. A., Christensen, J. H. & Dyerberg, J., n-3 fatty acids from fish and coronary artery disease: Implications for public health. Public Health Nutr., 3(1): 91–98 (2000).
Arterburn, L. M., Oken, H. A., Bailey Hall, E., Hamersley, J., Kuratko, C. N. & Hoffman, J. P., Algal-Oil Capsules and Cooked Salmon: Nutritionally Equivalent Sources of Docosahexaenoic Acid. J. Am. Diet. Assoc., 108(7): 1204–1209 (2008).
Rinaldi, R., Armaini. & Salim, M., A selection of nitrogen source for biomass and lipid production of Scenedesmus dimorphus microalgae. Res. J. Pharm. Biol. Chem. Sci., 6(3): 143–147 (2015).
Chen, S. C. C., Tsai, S. P., Jhao, J. Y., Jiang, W. K., Tsao, C. K. & Chang, L. Y., Liver Fat, Hepatic Enzymes, Alkaline Phosphatase and the Risk of Incident Type 2 Diabetes: A Prospective Study of 132,377 Adults. Sci. Rep., 7(1): 4649 (2017).
Go, R. E., Hwang, K. A., Park, G. T., Lee, H. M., Lee, G. A., Kim, C. W., Jeon, S. Y., et al., Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet. J. Biomed. Res., 30(3): (2016).
Kumar, S. A., Magnusson, M., Ward, L. C., Paul, N. A. & Brown, L., A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats. Nutrients, 7(4): 2771–2787 (2015).
Zhang, Q. Q. & Lu, L. G., Nonalcoholic fatty liver disease: Dyslipidemia, risk for cardiovascular complications, and treatment strategy. Journal of Clinical and Translational Hepatology, 3(1): 78–84 (2015).
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2022 Jurnal Riset Kimia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Please find the rights and licenses in Jurnal Riset Kimia (J. Ris. Kim). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The use the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution 4.0 International License.Â
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons license, the journal permits users to copy, distribute, and display the material for any purpose. Users will also need to attribute authors and J. Ris. Kim on distributing works in the journal and other media of publications.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. J. Ris. Kim will not be held liable for anything that may arise due to the author(s) internal dispute. J. Ris. Kim will only communicate with the corresponding author.