Sintesis Cepat Nanopartikel Perak dengan Irradiasi Gelombang Mikro dan Aplikasinya sebagai Antibakteri pada Kain Katun

Authors

  • Mohammad Alauhdin Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia
  • Ahmad Dzulfiqar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia
  • Arsenius Olfa Herlistyawan Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia

DOI:

https://doi.org/10.25077/jrk.v13i2.555

Keywords:

silver nanoparticles, microwave, antibacterial, cotton fabric

Abstract

Silver nanoparticles (AgNPs) are silver metal particles with nanoscale size. In the scale, they generate different properties compared to the original particle or material. AgNPs can be synthesized in several ways, one of which is through chemical reduction. This method is accelerated by heating, usually using conventional heating. However, the heating takes time, so it is less effective for application. In this study, AgNPs were synthesized by chemical reduction with sodium citrate as a reducing agent accompanied by microwave irradiation to speed up the synthesis process. The resulting AgNPs were then applied to cotton fabric as an antibacterial agent. The reaction lasted for 6 minutes, much faster than using conventional heating. The synthesized particles have an average size of 56.2 nm and are stable for up to 41 days of storage. The AgNPs then can be applied to cotton fabric and inhibit the growth of S. aureus and P. aeruginosa bacteria with a Minimum Inhibitory Concentration of 70%.

References

Avissa, M. & Alauhdin, M., Selective Colorimetric Detection of Mercury(II) using Silver Nanoparticles-Chitosan. Molekul, 17(1): 107–115 (2022).

Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., Kant, T., et al., Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem. J., 150: 104156 (2019).

Balasurya, S., Syed, A., Thomas, A. M., Marraiki, N., Elgorban, A. M., Raju, L. L., Das, A., et al., Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 228: 117712 (2020).

Taufiq, M., Eden, W. T., Sumarni, W. & Alauhdin, M., Colorimetric detection of metal ions using green-synthesized silver nanoparticles. J. Phys. Conf. Ser., 1918: 1–6 (2021).

Wei, D., Sun, W., Qian, W., Ye, Y. & Ma, X., The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 344(17): 2375–2382 (2009).

Fatimah, I., Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res., 7(6): 961–969 (2016).

Jian, Y., Chen, X., Ahmed, T., Shang, Q., Zhang, S., Ma, Z. & Yin, Y., Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J. Adv. Res., 38: 1–12 (2022).

Saha, J., Begum, A., Mukherjee, A. & Kumar, S., A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res., 27(5): 245–250 (2017).

Zhou, J., Xu, W., You, Z., Wang, Z., Luo, Y., Gao, L., Yin, C., et al., A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep., 6(1): 25149 (2016).

Lew, A., Krutzik, P. O., Hart, M. E. & Chamberlin, A. R., Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J. Comb. Chem., 4(2): 95–105 (2002).

Punuri, J. B., Sharma, P., Sibyala, S., Tamuli, R. & Bora, U., Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int. Nano Lett., 2(18): 1–9 (2012).

Aadil, K. R., Pandey, N., Mussatto, S. I. & Jha, H., Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J. Environ. Chem. Eng., 7(5): 103296 (2019).

Mlalila, N. G., Swai, H. S., Hilonga, A. & Kadam, D. M., Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol. Sci. Appl., 10: 1–9 (2017).

Ariyanta, H. A., Preparasi Nanopartikel Perak dengan Metode Reduksi dan Aplikasinya sebagai Antibakteri Penyebab Luka Infeksi. J. Mkmi, 36–42 (2014).

Sambhy, V., MacBride, M. M., Peterson, B. R. & Sen, A., Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. J. Am. Chem. Soc., 128(30): 9798–9808 (2006).

Balamurugan, M., Saravanan, S. & Soga, T., Coating of green-synthesized silver nanoparticles on cotton fabric. J. Coatings Technol. Res., 14(3): 735–745 (2017).

Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. & Galdiero, M., Silver nanoparticles as potential antibacterial agents. Molecules, 20(5): 8856–8874 (2015).

Novarini, E. & Wahyudi, T., Synthesis of Zinc Oxide (ZnO) Nanoparticles using Surfactant as a Stabilizing Agent and It’s Application in Antibacterial Textiles Fabrication. Arena Tekst., 26(2): 81–87 (2011).

Haji, A., Barani, H. & Qavamnia, S. S., In situ synthesis of silver nanoparticles onto cotton fibres modified with plasma treatment and acrylic acid grafting. Micro Nano Lett., 8(6): 315–318 (2013).

Ramachandran, T., Kumar, R. & Rajendran, R., Antimicrobial textiles - An overview. J. Inst. Eng. (India), Part TX Text. Eng. Div., 84(2): 42–47 (2004).

Caro, C., Castillo, P. M., Klippstein, R., Pozo, D. & Zaderenko, A. P., in Silver Nanoparticles, (ed. Perez, D. P.) IntechOpen, (2010). doi:https://doi.org/10.5772/8513

Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J. & Fernig, D. G., A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19): 4855–4861 (2014).

Geethalakshmi, R. & Sarada, D. V. L., Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. Int. J. Nanomedicine, 7: 5375–5384 (2012).

Yang, X., Yu, Y. & Gao, Z., A Highly Sensitive Plasmonic DNA Assay Based on Triangular Silver Nanoprism Etching. ACS Nano, 8(5): 4902–4907 (2014).

Gao, C., Lu, Z., Liu, Y., Zhang, Q., Chi, M., Cheng, Q. & Yin, Y., Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew. Chemie Int. Ed., 51(23): 5629–5633 (2012).

Chaloupka, K., Malam, Y. & Seifalian, A. M., Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 28(11): 580–588 (2010).

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., et al., Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology, 18(10): (2007).

Tompsett, G. A., Conner, W. C. & Yngvesson, K. S., Microwave synthesis of nanoporous materials. Chemphyschem, 7(2): 296–319 (2006).

Kappe, C. O., Pieber, B. & Dallinger, D., Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed. Engl., 52(4): 1088–1094 (2013).

Dudley, G. B., Richert, R. & Stiegman, A. E., On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci., 6(4): 2144–2152 (2015).

Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B., Synthesis of Silver Nanoparticles by Reduction of Silver Ion with m-Hydroxybenzoic Acid. Asian J. Chem., 29(7): 1417–1422 (2017).

Sutanti, F., Silvia, D., Putri, M. A. & Fabiani, V. A., Pengaruh Konsentrasi AgNO3 pada Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ektrak Pucuk Idat (Cratoxylum glaucum KORTH). Pros. Semin. Nas. Penelit. dan Pengabdi. pada Mayarakat, 1: 175–178 (2018).

Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B., Two Highly Stable Silver Nanoparticles: Surface Plasmon Resonance Spectra Study of Silver Nanoparticles Capped with m-Hydroxybenzoic Acid and p-Hydroxybenzoic Acid. Molekul, 13(1): 30 (2018).

Ridwan, R. N., Gusrizal, G., Nurlina, N. & Santosa, S. J., Sintesis dan Studi Stabilitas Nanopartikel Perak Tertudung Asam Salisilat. J. Pure Appl. Chem. Res., 7(1): 45–52 (2018).

Zeta potential measurement using laser Doppler electrophoresis (LDE).

Shah, R., Eldridge, D., Palombo, E. & Harding, I., Optimisation and Stability Assessment of Solid Lipid Nanoparticles using Particle Size and Zeta Potential. J. Phys. Sci., 25(1): 59–75 (2014).

El-Rafie, M. H., Ahmed, H. B. & Zahran, M. K., Characterization of Nanosilver Coated Cotton Fabrics and Evaluation of its Antibacterial Efficacy. Carbohydr. Polym., 107(1): 174–181 (2014).

McBirney, S. E., Trinh, K., Wong-Beringer, A. & Armani, A. M., Wavelength-Normalized Spectroscopic Analysis of Staphylococcus aureus and Pseudomonas aeruginosa Growth Rates. Biomed. Opt. Express, 7(10): 4034 (2016).

Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A. & Hasan, M. M., Antibacterial Characterization of Silver Nanoparticles against E. coli ATCC-15224. J. Mater Sci. Technol., 24(2): 192–196 (2008).

Rori, B. N. D., Khoman, J. A. & Supit, A. S. R., Uji Konsentrasi Hambat Minimum Ekstrak Daun Gedi (Abelmoschus manihot L. Medik) terhadap Pertumbuhan Streptococcus mutans. e-GIGI, 6(2): 83–90 (2018).

Dewi, F. K., Aktivitas Antibakteri Ekstrak Etanol Buah Mengkudu (Morinda citrifolia, linnaeus) terhadap Bakteri Pembusuk Daging Segar. Universitas Sebelas Maret, (2010).

Downloads

Published

2022-09-30

How to Cite

Alauhdin, M., Dzulfiqar, A., & Olfa Herlistyawan, A. (2022). Sintesis Cepat Nanopartikel Perak dengan Irradiasi Gelombang Mikro dan Aplikasinya sebagai Antibakteri pada Kain Katun. Jurnal Riset Kimia, 13(2), 226–235. https://doi.org/10.25077/jrk.v13i2.555

Issue

Section

Articles

Citation Check