Sintesis Cepat Nanopartikel Perak dengan Irradiasi Gelombang Mikro dan Aplikasinya sebagai Antibakteri pada Kain Katun
DOI:
https://doi.org/10.25077/jrk.v13i2.555Keywords:
silver nanoparticles, microwave, antibacterial, cotton fabricAbstract
Silver nanoparticles (AgNPs) are silver metal particles with nanoscale size. In the scale, they generate different properties compared to the original particle or material. AgNPs can be synthesized in several ways, one of which is through chemical reduction. This method is accelerated by heating, usually using conventional heating. However, the heating takes time, so it is less effective for application. In this study, AgNPs were synthesized by chemical reduction with sodium citrate as a reducing agent accompanied by microwave irradiation to speed up the synthesis process. The resulting AgNPs were then applied to cotton fabric as an antibacterial agent. The reaction lasted for 6 minutes, much faster than using conventional heating. The synthesized particles have an average size of 56.2 nm and are stable for up to 41 days of storage. The AgNPs then can be applied to cotton fabric and inhibit the growth of S. aureus and P. aeruginosa bacteria with a Minimum Inhibitory Concentration of 70%.
References
Avissa, M. & Alauhdin, M., Selective Colorimetric Detection of Mercury(II) using Silver Nanoparticles-Chitosan. Molekul, 17(1): 107–115 (2022).
Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., Kant, T., et al., Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem. J., 150: 104156 (2019).
Balasurya, S., Syed, A., Thomas, A. M., Marraiki, N., Elgorban, A. M., Raju, L. L., Das, A., et al., Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 228: 117712 (2020).
Taufiq, M., Eden, W. T., Sumarni, W. & Alauhdin, M., Colorimetric detection of metal ions using green-synthesized silver nanoparticles. J. Phys. Conf. Ser., 1918: 1–6 (2021).
Wei, D., Sun, W., Qian, W., Ye, Y. & Ma, X., The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 344(17): 2375–2382 (2009).
Fatimah, I., Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res., 7(6): 961–969 (2016).
Jian, Y., Chen, X., Ahmed, T., Shang, Q., Zhang, S., Ma, Z. & Yin, Y., Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J. Adv. Res., 38: 1–12 (2022).
Saha, J., Begum, A., Mukherjee, A. & Kumar, S., A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res., 27(5): 245–250 (2017).
Zhou, J., Xu, W., You, Z., Wang, Z., Luo, Y., Gao, L., Yin, C., et al., A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Sci. Rep., 6(1): 25149 (2016).
Lew, A., Krutzik, P. O., Hart, M. E. & Chamberlin, A. R., Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J. Comb. Chem., 4(2): 95–105 (2002).
Punuri, J. B., Sharma, P., Sibyala, S., Tamuli, R. & Bora, U., Piper betle-mediated green synthesis of biocompatible gold nanoparticles. Int. Nano Lett., 2(18): 1–9 (2012).
Aadil, K. R., Pandey, N., Mussatto, S. I. & Jha, H., Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J. Environ. Chem. Eng., 7(5): 103296 (2019).
Mlalila, N. G., Swai, H. S., Hilonga, A. & Kadam, D. M., Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol. Sci. Appl., 10: 1–9 (2017).
Ariyanta, H. A., Preparasi Nanopartikel Perak dengan Metode Reduksi dan Aplikasinya sebagai Antibakteri Penyebab Luka Infeksi. J. Mkmi, 36–42 (2014).
Sambhy, V., MacBride, M. M., Peterson, B. R. & Sen, A., Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials. J. Am. Chem. Soc., 128(30): 9798–9808 (2006).
Balamurugan, M., Saravanan, S. & Soga, T., Coating of green-synthesized silver nanoparticles on cotton fabric. J. Coatings Technol. Res., 14(3): 735–745 (2017).
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G. & Galdiero, M., Silver nanoparticles as potential antibacterial agents. Molecules, 20(5): 8856–8874 (2015).
Novarini, E. & Wahyudi, T., Synthesis of Zinc Oxide (ZnO) Nanoparticles using Surfactant as a Stabilizing Agent and It’s Application in Antibacterial Textiles Fabrication. Arena Tekst., 26(2): 81–87 (2011).
Haji, A., Barani, H. & Qavamnia, S. S., In situ synthesis of silver nanoparticles onto cotton fibres modified with plasma treatment and acrylic acid grafting. Micro Nano Lett., 8(6): 315–318 (2013).
Ramachandran, T., Kumar, R. & Rajendran, R., Antimicrobial textiles - An overview. J. Inst. Eng. (India), Part TX Text. Eng. Div., 84(2): 42–47 (2004).
Caro, C., Castillo, P. M., Klippstein, R., Pozo, D. & Zaderenko, A. P., in Silver Nanoparticles, (ed. Perez, D. P.) IntechOpen, (2010). doi:https://doi.org/10.5772/8513
Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J. & Fernig, D. G., A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst, 139(19): 4855–4861 (2014).
Geethalakshmi, R. & Sarada, D. V. L., Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. Int. J. Nanomedicine, 7: 5375–5384 (2012).
Yang, X., Yu, Y. & Gao, Z., A Highly Sensitive Plasmonic DNA Assay Based on Triangular Silver Nanoprism Etching. ACS Nano, 8(5): 4902–4907 (2014).
Gao, C., Lu, Z., Liu, Y., Zhang, Q., Chi, M., Cheng, Q. & Yin, Y., Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew. Chemie Int. Ed., 51(23): 5629–5633 (2012).
Chaloupka, K., Malam, Y. & Seifalian, A. M., Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 28(11): 580–588 (2010).
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., et al., Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology, 18(10): (2007).
Tompsett, G. A., Conner, W. C. & Yngvesson, K. S., Microwave synthesis of nanoporous materials. Chemphyschem, 7(2): 296–319 (2006).
Kappe, C. O., Pieber, B. & Dallinger, D., Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed. Engl., 52(4): 1088–1094 (2013).
Dudley, G. B., Richert, R. & Stiegman, A. E., On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci., 6(4): 2144–2152 (2015).
Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B., Synthesis of Silver Nanoparticles by Reduction of Silver Ion with m-Hydroxybenzoic Acid. Asian J. Chem., 29(7): 1417–1422 (2017).
Sutanti, F., Silvia, D., Putri, M. A. & Fabiani, V. A., Pengaruh Konsentrasi AgNO3 pada Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ektrak Pucuk Idat (Cratoxylum glaucum KORTH). Pros. Semin. Nas. Penelit. dan Pengabdi. pada Mayarakat, 1: 175–178 (2018).
Gusrizal, G., Santosa, S. J., Kunarti, E. S. & Rusdiarso, B., Two Highly Stable Silver Nanoparticles: Surface Plasmon Resonance Spectra Study of Silver Nanoparticles Capped with m-Hydroxybenzoic Acid and p-Hydroxybenzoic Acid. Molekul, 13(1): 30 (2018).
Ridwan, R. N., Gusrizal, G., Nurlina, N. & Santosa, S. J., Sintesis dan Studi Stabilitas Nanopartikel Perak Tertudung Asam Salisilat. J. Pure Appl. Chem. Res., 7(1): 45–52 (2018).
Zeta potential measurement using laser Doppler electrophoresis (LDE).
Shah, R., Eldridge, D., Palombo, E. & Harding, I., Optimisation and Stability Assessment of Solid Lipid Nanoparticles using Particle Size and Zeta Potential. J. Phys. Sci., 25(1): 59–75 (2014).
El-Rafie, M. H., Ahmed, H. B. & Zahran, M. K., Characterization of Nanosilver Coated Cotton Fabrics and Evaluation of its Antibacterial Efficacy. Carbohydr. Polym., 107(1): 174–181 (2014).
McBirney, S. E., Trinh, K., Wong-Beringer, A. & Armani, A. M., Wavelength-Normalized Spectroscopic Analysis of Staphylococcus aureus and Pseudomonas aeruginosa Growth Rates. Biomed. Opt. Express, 7(10): 4034 (2016).
Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A. & Hasan, M. M., Antibacterial Characterization of Silver Nanoparticles against E. coli ATCC-15224. J. Mater Sci. Technol., 24(2): 192–196 (2008).
Rori, B. N. D., Khoman, J. A. & Supit, A. S. R., Uji Konsentrasi Hambat Minimum Ekstrak Daun Gedi (Abelmoschus manihot L. Medik) terhadap Pertumbuhan Streptococcus mutans. e-GIGI, 6(2): 83–90 (2018).
Dewi, F. K., Aktivitas Antibakteri Ekstrak Etanol Buah Mengkudu (Morinda citrifolia, linnaeus) terhadap Bakteri Pembusuk Daging Segar. Universitas Sebelas Maret, (2010).
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Please find the rights and licenses in Jurnal Riset Kimia (J. Ris. Kim). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The use the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution 4.0 International License.Â
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons license, the journal permits users to copy, distribute, and display the material for any purpose. Users will also need to attribute authors and J. Ris. Kim on distributing works in the journal and other media of publications.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. J. Ris. Kim will not be held liable for anything that may arise due to the author(s) internal dispute. J. Ris. Kim will only communicate with the corresponding author.