Ekspansi Termal, Oxygen Content, dan Sifat Elektrokimia Oksida SmBa0.5Sr0.5Co2O5+δ (70%) + SDC (30%) Sebagai Katoda SOFC

Authors

  • Adi Subardi Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Indonesia
  • Yen-Pei Fu Department of Materials Science and Engineering, Universitas National Dong Hwa , Taiwan, Province of China

DOI:

https://doi.org/10.25077/jrk.v13i2.557

Keywords:

SOFC, Cathode, Oxygen content, TEC, Long-term stability

Abstract

The thermal properties of the double perovskite SmBa0.5Sr0.5Co2O5+δ (70%) + SDC (30%) have been investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFC). This study also includes the oxygen content and electrochemical performance of long-term tests carried out to evaluate the electrochemical stability. Cathode powder is fabricated by a simple and relatively inexpensive solid-state reaction. Oxygen content decreased gradually from room temperature to 800oC by 18.3%. Doping 30% SDC into SBSC oxide can reduce the thermal expansion coefficients (TEC) value from 19.80 x 10-6 (K-1) to 18.17 x 10-6 (K-1) or a decrease of 8.23%. The activation energy (Ea) identified by the electrochemical impedance spectroscopy (EIS), low field (LF), and high field (HF) techniques were 125.3 kJ mol-1, 60.6 kJ mol-1, and 62.5 kJ mol-1, respectively. The SBSC73|SDC|SBSC73 symmetric cell test for 96 hours at 600oC showed an increase in the average polarization resistance value of 0.30% h-1. The cathode grains are evenly distributed with a size of 2-3 µm and tend to be porous. These results exhibit that SmBa0.5Sr0.5Co2O5+δ (70%) + SDC (30%) is a promising cathode material for IT-SOFCs.

References

Ding, D., Li, X., Lai, S. Y., Gerdes, K. & Liu, M., Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci., 7(2): 552–575 (2014).

Yoo, Y., Namgung, Y., Bhardwaj, A., Song, S. & Group, E. S., (LSCF6428) as a Robust Cathode Material for IT-SOFC. 56(5): 497–505 (2019).

Mushtaq, N., Lu, Y., Xia, C., Dong, W., Wang, B., Wang, X., Yousaf Shah, M. A. K., et al., Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3–δ perovskite oxide for enhanced oxygen reduction catalytic performance. J. Catal., 395: 168–177 (2021).

Klyndyuk, A. I., Chizhova, E. A., Kharytonau, D. S. & Medvedev, D. A., Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells. Materials (Basel)., 15(1): 1–31 (2022).

Bedon, A., Rieu, M., Viricelle, J. P. & Glisenti, A., Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalization of La0.6Sr0.4Ga0.3Fe0.7O3 with Oxides. Part 1: Cathodes by Means of Iron Oxide. ACS Appl. Energy Mater., 1(12): 6840–6850 (2018).

Sındıraç, C. & Akkurt, S., Formation of La1−xSrxCo1−yFeyO3−δ cathode materials from precursor salts by heating in contact with CGO electrolyte. Int. J. Hydrogen Energy, 41(40): 18157–18165 (2016).

Chen, K., Li, N., Ai, N., Li, M., Cheng, Y., Rickard, W. D. A., Li, J., et al., Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A, 4(45): 17678–17685 (2016).

Li, M., Chen, K., Hua, B., Luo, J. li., Rickard, W. D. A., Li, J., Irvine, J. T. S., et al., Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells. J. Mater. Chem. A, 4(48): 19019–19025 (2016).

Liu, Y., Bi, J., Chi, B., Pu, J. & Jian, L., Effects of impregnating palladium on catalytic performance of LSCF-GDC composite cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 41(15): 6486–6492 (2016).

Pang, S., Wang, W., Chen, T., Wang, Y., Xu, K., Shen, X., Xi, X., et al., The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 41(31): 13705–13714 (2016).

Kim, J. H. & Irvine, J. T. S., Characterization of layered perovskite oxides NdBa1-xSrxCo2O5+δ (x=0 and 0.5) as cathode materials for IT-SOFC. Int. J. Hydrogen Energy, 37(7): 5920–5929 (2012).

Kim, J., Jun, A., Shin, J. & Kim, G., Effect of Fe doping on layered GdBa0.5Sr0.5Co2O5+δ perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Am. Ceram. Soc., 97(2): 651–656 (2014).

Kuroda, C., Zheng, K. & Świerczek, K., Characterization of novel GdBa0.5Sr0.5Co2-xFexO5+δ perovskites for application in IT-SOFC cells. Int. J. Hydrogen Energy, 38(2): 1027–1038 (2013).

Jiang, L., Wei, T., Zeng, R., Zhang, W. X. & Huang, Y. H., Thermal and electrochemical properties of PrBa0.5Sr0.5Co2-xFexO5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources, 232: 279–285 (2013).

Joo, S., Kim, J., Shin, J., Lim, T.-H. & Kim, G., Investigation of a Layered Perovskite for IT-SOFC Cathodes: B-Site Fe-Doped YBa0.5Sr0.5Co2-xFexO5+δ. J. Electrochem. Soc., 163(14): F1489–F1495 (2016).

Wang, B., Long, G., Li, Y. & Ji, Y., Characterization of SmBa0.5Sr0.5CoCuO5+δ cathode based on GDC and LSGM electrolyte for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 41(31): 13603–13610 (2016).

Jun, A., Kim, J., Shin, J. & Kim, G., Optimization of Sr content in layered SmBa1-xSrxCo2O5+δ perovskite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 37(23): 18381–18388 (2012).

Mckinlay, A., Connor, P., Irvine, J. T. S. & Zhou, W., structural chemistry and conductivity of a solid solution of YBaSrCO.pdf. 19120–19125 (2011).

Kim, J.-H., Prado, F. & Manthiram, A., Characterization of GdBa1−xSrxCo2O5+δ (0≤x≤1.0) Double Perovskites as Cathodes for Solid Oxide Fuel Cells. J. Electrochem. Soc., 155(10): B1023 (2008).

Ahn, M., Lee, J. & Lee, W., Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources, 353: 176–182 (2017).

Chen, D., Ran, R. & Shao, Z., Assessment of PrBaCo2O5+δ + Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J. Power Sources, 195(21): 7187–7195 (2010).

Huang, K., Lee, H. Y. & Goodenough, J. B., Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites: New Cathode Materials for Solid‐Oxide Fuel Cells. J. Electrochem. Soc., 145(9): 3220–3227 (1998).

Mori, M. & Sammes, N. M., Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 146(3–4): 301–312 (2002).

Che, X., Shen, Y., Li, H. & He, T., Assessment of LnBaCo1.6Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate- temperature solid-oxide fuel cells. J. Power Sources, 222: 288–293 (2013).

Wei, B., Lü, Z., Jia, D., Huang, X., Zhang, Y. & Su, W., Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δ double-perovskite type oxides. Int. J. Hydrogen Energy, 35(8): 3775–3782 (2010).

Pang, S. L., Jiang, X. N., Li, X. N., Wang, Q. & Zhang, Q. Y., Structural stability and high-temperature electrical properties of cation-ordered/disordered perovskite LaBaCoO. Mater. Chem. Phys., 131(3): 642–646 (2012).

Subardi, A., Cheng, M. H. & Fu, Y. P., Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. Int. J. Hydrogen Energy, 39(35): 20783–20790 (2014).

Subardi, A., Chen, C. C. & Fu, Y. P., Oxygen transportation, electrical conductivity and electrochemical properties of layered perovskite SmBa0.5Sr0.5Co2O5+Δ. Int. J. Hydrogen Energy, 42(8): 5284–5294 (2017)

Downloads

Published

2022-09-30

How to Cite

Subardi, A., & Yen-Pei Fu. (2022). Ekspansi Termal, Oxygen Content, dan Sifat Elektrokimia Oksida SmBa0.5Sr0.5Co2O5+δ (70%) + SDC (30%) Sebagai Katoda SOFC. Jurnal Riset Kimia, 13(2), 208–215. https://doi.org/10.25077/jrk.v13i2.557

Issue

Section

Articles

Citation Check