Identification of Secondary Metabolites and FT-IR Analysis of Getih-Getihan Fruit Extract (Rivina humilis L.)

Authors

  • Mariyam Department of Chemistry, Faculty of Sciences, Institut Teknologi Sumatera, Indonesia
  • Yulistia Anggraini Department of Chemistry, Faculty of Sciences, Institut Teknologi Sumatera, Indonesia
  • Tati Suhartati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Indonesia

DOI:

https://doi.org/10.25077/jrk.v14i1.565

Keywords:

Rivina humilis L., secondary metabolites, phytochemical, FTIR

Abstract

Getih-getihan (Rivina humilis L.) plants can be used as antibacterial, antioxidant and natural pesticides. Most of the biological activities of natural products originated from secondary metabolites contained therein. Studies have shown the effects of leaves, branches, and fruits extract of R. humilis towards biological activities. However, identifying the phytochemical compounds of R. humilis L. fruit is less discussed. Here we proposed research on the identification of secondary metabolite compounds of R. humilis L. fruit extract using phytochemical screening tests and spectroscopic method. The extraction of R. humilis L. fruit was proceeded by maceration method using methanol solvent. The series of phytochemical screening tests signified the presence of alkaloids, terpenoids, tannins and flavonoids. Furthermore, we applied FT-IR analysis to confirm the existence of functional groups in the secondary metabolite compounds. A broad absorption band showed the hydroxyl groups (O-H) at 3265 cm-1. The sharp band at 1632 cm-1 exhibited the C=C stretching band. The presence of C-N (stretching) was signified by the absorption band at 1237 cm-1, while the C-H bond in CH3 terminals (alkanes, alkyl group) was exhibited at 1401 cm-1. All the functional groups confirmed in the FT-IR analysis corroborated the phytochemical test results.

References

Jin, X. C., Liu, G. Q., Xu, Z. H. & Tao, W. Y., Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol., 74(1): 239–243 (2007).

Rani, B., Kumar, V., Singh, J., Bisht, S., Teotia, P., Sharma, S. & Kela, R., Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Brazilian J. Microbiol., 45(3): 1055–1063 (2014).

Ellouze, M. & Sayadi, S., White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. in Management of Hazardous Wastes, (eds. Saleh, H. E.-D. M. & Rahman, R. O. A.), IntechOpen, 103–120 (2016).

Wesenberg, D., Kyriakides, I. & Agathos, S. N., White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv., 22(1–2): 161–187 (2003).

Jebapriya, G. R. & Gnanadoss, J. J., Bioremediation of textile dye using white-rot fungi: a review. Int. J. Curr. Res. Rev., 5(3): 1–13 (2013).

Andleeb, S., Atiq, N., Ali, M. I., Ur-Rehman, F., Hameed, A. & Ahmad, S., Biodegradation of anthraquinone dye by Aspergillus niger SA1 in self designed fluidized bed bioreactor. Iran. J. Environ. Heal. Sci. Eng., 7(5): 371–376 (2010).

Morales-Álvarez, E. D., Rivera-Hoyos, C. M., González-Ogliastri, N., Rodríguez-Vázquez, R., Poutou-Piñales, R. A., Daza, C. E. & Pedroza Rodriguez, A. M., Partial removal and detoxification of Malachite Green and Crystal Violet from laboratory artificially contaminated water by Pleurotus ostreatus. Univ. Sci., 21(3): 259–285 (2016).

Falah, S., Sari, N. M. & Hidayat, A., Decolorization of remazol Brilliant blue R by laccase of newly isolated Leiotrametes flavida strain ZUL62 from Bangka heath forest, Indonesia. Biodiversitas, 19(2): 583–589 (2018).

Banat, I. M., Nigam, P., Singh, D. & Marchant, R., Microbial decolourization of textile-dye-containing effluents: a review. Bioresour. Technol., 58(3): 217–227 (1996).

Asgher, M., Azim, N. & Bhatti, H. N., Decolorization of practical textile industry effluents by white rot fungus Coriolus versicolor IBL-04. Biochem. Eng. J., 47(1–3): 61–65 (2009).

Parmar, N. D. & Shukla, S. R., Decolourization of dye wastewater by microbial methods-A review. Indian J. Chem. Technol., 25(4): 315–323 (2019).

Wahyudi, T. R., Rahayu, S. & Azwin, A., Keanekaragaman jamur Basidiomycota di hutan tropis dataran rendah Sumatera, Indonesia (studi kasus di Arboretum Fakultas Kehutanan Universitas Lancang Kuning Pekanbaru). Wahana For. J. Kehutan., 11(2): 98–111 (2016).

Naidu, B., Reddy, R., Satyanarayana, R. K. & Prakasam, V., A study of synthetic lignin decolorization ability of P. chrysosporium, T. hirsuta and marine fungi. African J. Environ. Econ. Manag., 2(4): 195–197 (2014).

Ratanapongleka, K. & Phetsom, J., Decolorization of synthetic dyes by crude lacasse from Lentinus polychrous Lev. Int. J. Chem. Eng. Appl., 5(1): 26–30 (2014).

Yanto, D. H. Y., Tachibana, S. & Itoh, K., Biodecolorization of textile dyes by immobilezed enzymes in a vertical bioreactor system. Procedia Environ. Sci., 20: 235–244 (2014).

Anita, S. H., Sari, F. P., Oktaviani, M., Laksana, R. P. B. & Yanto, D. H. Y., Biodekolorisasi pewarna tekstil antrakuinon menggunakan isolat jamur tropis Indonesia. in Prosiding Seminar Lignoselulosa, 129: 148–154 (2018).

Anita, S. H., Ardiati, F. C., Oktaviani, M., Sari, F. P., Nurhayat, O. D., Ramadhan, K. P. & Yanto, D. H. Y., Immobilization of laccase from Trametes hirsuta EDN 082 in light expanded clay aggregate for decolorization of Remazol Brilliant Blue R dye. Bioresour. Technol. Reports, 12: 100602 (2020).

Oktaviani, M. & Yanto, D. H. Y., Biodecolorization of textile dye by isolated tropical fungi. in Proceedings of International Conference of Indonesia Forestry Researchers III-2015, 276–285 Institut Pertanian Bogor, (2016).

Seshikala, D. & Charya, M. A. S., Collection and screening of Basidiomycetes for better lignin degraders. Int. J. Life Sci. Biotechnol. Pharma Res., 4(1): 203–211 (2012).

Sharma, A., Aggarwal, N. K. & Yadav, A., Isolation and screening of lignolytic fungi from various ecological niches. Univers. J. Microbiol. Res., 5(2): 25–34 (2017).

Risdianto, H., Sofianti, E., Suhardi, S. H. & Setiadi, T., Optimisation of laccase production using white rot fungi and agriculture wastes in solid state fermentation. ITB J. Eng. Sci., 44(2): 93–105 (2012).

Vrsanska, M., Voberkova, S., Langer, V., Palovcikova, D., Moulick, A., Adam, V. & Kopel, P., Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules, 21(11): 1553 (2016).

Afreen, S., Anwer, R., Singh, R. K. & Fatma, T., Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J. Biol. Sci., 25(7): 1446–1453 (2018).

Patel, H., Gupte, S., Gahlout, M. & Gupte, A., Purification and characterization of an extracellular laccase from solid-state culture of Pleurotus ostreatus HP-1. 3 Biotech, 4(1): 77–84 (2014).

Dao, A. T. N., Vonck, J., Janssens, T. K. S., Dang, H. T. C., Brouwer, A. & de Boer, T. E., Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ind. Crops Prod., 128: 153–161 (2019).

Plácido, J., Chanagá, X., Ortiz-Monsalve, S., Yepes, M. & Mora, A., Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp. from Colombia. Bioresour. Bioprocess., 3(1): 1–14 (2016).

Downloads

Published

2023-03-24

How to Cite

Mariyam, Anggraini, Y. ., & Suhartati, T. (2023). Identification of Secondary Metabolites and FT-IR Analysis of Getih-Getihan Fruit Extract (Rivina humilis L.). Jurnal Riset Kimia, 14(1), 35–42. https://doi.org/10.25077/jrk.v14i1.565

Issue

Section

Articles

Citation Check