Sintesis dan Uji Fotostabilitas Kompleks Zn(II)-Astaxanthin


  • Winda Rahmalia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Dwi Imam Prayitno Department of Marine, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Adhitiyawarman Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Septiani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia



astaxanthin, complex, stability, degradation kinetics


Astaxanthin is a pigment from the carotenoid group found in algae, shrimp, and crabs. Due to its chemical structure, astaxanthin has many health benefits but low stability against direct exposure to light and oxygen. In this study, the Zn-astaxanthin complex was synthesized using a reflux reactor at 37o and 60oC. Complex compounds were analyzed using a UV-Vis spectrophotometer and FTIR. The UV-Vis spectrophotometer analysis showed a bathochromic shift in acetone (475 to 477 nm). In comparison, in dimethyl sulfoxide, a hypsochromic shift (493 to 475 nm) was observed, and a new absorption peak was observed at 330 nm. FTIR analysis shows a decrease in the intensity of the C=O stretching vibration and -OH group vibration at 1712 and 1219 cm-1, respectively. This indicated an interaction between the metal ion Zn2+ and astaxanthin. Zn-astaxanthin has better stability than astaxanthin during irradiation, using a halogen lamp at a light intensity of 300 W/m2 for 6 hours. Based on the zero-order degradation kinetics model, the degradation rate constant of the Zn-astaxanthin complex was 0.0621, smaller than that of astaxanthin (0.0880).


Ngginak, J., Semangun, H., Mangimbulude, J. C. & Rondonuwu, F. S., Komponen Senyawa Aktif pada Udang Serta Aplikasinya dalam Pangan. J. Sains Med., 5(2): 128–145 (2015).

Firmansyah, A., Winingsih, W., Virgina Ababiel, Z., Nurmeilasari, N. & Setiasih, A., Produksi Astaxanthin dari Mikroalga Haematococcus Pluvialis Menggunakan Ekstraksi Karbon Dioksida Superkritikal yang Dimodifikasi. JSTFI J. Sains dan Teknol. Farm. Indones., VIII(2): 13–28 (2019).

Kidd, P., Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern. Med. Rev., 16(4): 355–364 (2011).

Santos-Sanchez, N. F., Hernández-Carlos, B., Torres-Arino, A. & Salas-Coronado, R., Astaxanthin and its Formulations as Potent Oxidative Stress Inhibitors. Pharmacogn. Rev., 14(27): 8–15 (2021).

Aryayustama, M. G., Wartini, N. M. & Suwariani, N. P., STABILITAS KADAR KAROTENOID EKSTRAK BUAH PANDAN (Pandanus tectorius) PADA CAHAYA DAN SUHU PENYIMPANAN Carotenoid Stability Of Pandanus Fruit Extract (Pandanus tectorius) On Light And Storage Temperature. J. Rekayasa dan Manaj. Agroindustri, 6(3): 218–224 (2018).

Lobato, K. B. de S., Paese, K., Forgearini, J. C., Guterres, S. S., Jablonski, A. & Rios, A. de O., Evaluation of stability of bixin in nanocapsules in model systems of photosensitization and heating. Lwt, 60(1): 8–14 (2015).

Cortez, R., Luna-Vital, D. A., Margulis, D. & Gonzalez de Mejia, E., Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf., 16(1): 180–198 (2017).

Zebib, B., Mouloungui, Z. & Noirot, V., Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorg. Chem. Appl., 2010: (2010).

Rahmalia, W., Septiani., Naselia, U. A., Usman, T., Silalahi, I. H. & Mouloungui, Z., Performance improvements of bixin and metal-bixin complexes sensitized solar cells by 1-methyl-3-propylimidazolium iodide in electrolyte system. Indones. J. Chem., 21(3): 669–678 (2021).

Pearson, R. G., The HSAB Principle - more quantitative aspects. Inorganica Chim. Acta, 240(1–2): 93–98 (1995).

Gallardo-Cabrera, C. & Rojas-Barahona, A., Stability study of an aqueous formulation of the annatto dye. Int. Food Res. J., 22(5): 2149–2154 (2015).

Rahmalia, W., Fabre, J. F., Usman, T. & Mouloungui, Z., Aprotic solvents effect on the UV-visible absorption spectra of bixin. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 131: 455–460 (2014).

Nagy, E. M., Sitran, S., Montopoli, M., Favaro, M., Marchiò, L., Caparrotta, L. & Fregona, D., Zinc(II) complexes with dithiocarbamato derivatives: Structural characterisation and biological assays on cancerous cell lines. J. Inorg. Biochem., 117: 131–139 (2012).

Shuaith, N., Synthesis and Characterisation of Novel Astaxanthin Metal Complexes. (October): (2015).

Stuart, B. H., Infrared Spectroscopy: Fundamentals and Applications. Infrared Spectroscopy: Fundamentals and Applications, 8: (2005).

Polyakov, N. E., Focsan, A. L., Bowman, M. K. & Kispert, L. D., Free radical formation in novel carotenoid metal ion complexes of astaxanthin. J. Phys. Chem. B, 114(50): 16968–16977 (2010).

Tayyari, S. F., Vakili, M., Nekoei, A. R., Rahemi, H. & Wang, Y. A., Vibrational assignment and structure of trifluorobenzoylacetone. A density functional theoretical study. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 66(3): 626–636 (2007).

Thoms, L., Girwidz, R. & Munich, L. M. U., Experimenting from a Distance : Optical Spectrometry via the Internet. MPTL18 – B. Proc., (March): 59–63 (2013).

Sterhov, A. I. & Loshkarev, I. Y., Determination of the proportion of natural light in solar radiation using the method of conversion of lighting units into energy. J. Phys. Conf. Ser., 1353(1): (2019).

Liu, Z., Ueda, K., Kim, H. J. & Sparrow, J. R., Photobleaching and fluorescence recovery of RPE bisretinoids. PLoS One, 10(9): 1–16 (2015).




How to Cite

Winda Rahmalia, Prayitno, D. I. ., Adhitiyawarman, & Septiani. (2023). Sintesis dan Uji Fotostabilitas Kompleks Zn(II)-Astaxanthin. Jurnal Riset Kimia, 14(1), 52–60.




Citation Check