Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Pelarut HNO3 untuk Produksi Bioetanol

Authors

  • Sefrinus Maria Dolfi Kolo Departement of Chemistry, Universitas Timor, Indonesia
  • Noviana Mery Obenu Departement of Chemistry, Universitas Timor, Indonesia
  • Lusitania Kefi Departement of Chemistry, Universitas Timor, Indonesia
  • Felicitas F.Fuel Departement of Chemistry, Universitas Timor, Indonesia

DOI:

https://doi.org/10.25077/jrk.v14i1.574

Keywords:

Ulva reticulata;, Hydrolysis;, Microwave;, Fermentation;, Bioethanol

Abstract

One alternative to make biofuels and replace petroleum-based fuels is to convert non-food ingredients from Ulva reticulata seaweed into bioethanol. Seventy percent of the earth's surface is covered by microalgae and seaweeds that can be converted into bioethanol. Ulva seaweed contains 50.3% carbohydrates in the form of heteropolysaccharides  such as glucose, arabinose, rhamnose and xylose. Optimization of the seaweed hydrolysis catalyzed by HNO3 using Microwave irradiation was done by varying acid concentration (1, 3, 5, 7%), hydrolysis time (30, 40, 50, and 60 minutes), and hydrolysis temperature (75, 100, 125, 150°C). Fermentation was carried out by varying inoculum concentrations (6, 8, and 10% (v/v)) for 5, 6 and 7 days at a temperature of 30°C and a pH of 4.5. Analysis of the surface texture of the sample was carried out by Scanning Electron Microscopy (SEM). The analysis of reducing sugars concentration was carried out using the dinitrosalicylate (DNS) method. Ethanol analysis was carried out by Gas Chromatography (GC). The results of SEM analysis showed that prior to hydrolysis, the surface morphology of the powder was still compact and intact. Whereas after being hydrolyzed with HNO3 it was seen that the surface texture of the powder suffered significant damage. The hydrolysis results showed that the optimum conditions during the pretreatment of U. reticulata powder was at acid concentration of 7%, reaction time of 50 minutes, reaction temperature of 150°C and 250 watts of power which gave hydrolysate with reducing sugar concentration of 86.5 g/L. Fermentation of the hydrolysate using yeast Saccharomyces cerevisiae produced bioethanol with concentration of 37.2% as analyzed using a gas chromatograph.

References

Sari, A. P., Ahmad, A., Usman, H. & Tuwo, A., Produksi Bioetanol dari Selulosa Alga Merah dengan Sistem Fermentasi Simultan Menggunakan Bakteri Clostridium acetobutylicum. J. Rumput Laut Indones., 2(2): 58–62 (2017).

Godvin Sharmila, V., Dinesh Kumar, M., Pugazhendi, A., Bajhaiya, A. K., Gugulothu, P. & Rajesh Banu, J., Biofuel production from Macroalgae: present scenario and future scope. Bioengineered, 12(2): 9216–9238 (2021).

Mathimani, T. & Pugazhendhi, A., Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal. Agric. Biotechnol., 17: 326–330 (2019).

Yu-Qing, T., Mahmood, K., Shehzadi, R. & Ashraf, M. F., Ulva Lactuca and Its Polysaccharides: Food and Biomedical Aspects. Journal of Biology, 6(1): (2016).

Hutagulung, A. M., Yunita, W., Rahamri, N. C. & Johansyah, A., Rencana Strategis 2015-2019 Kementerian Energi dan Sumber Daya Mineral Direktorat Jenderal Minyak dan Gas Bumi. Kementerian Energi dan Sumber Daya Mineral Direktorat Jenderal Minyak dan Gas Bumi, (2015).

Agustini, N. W. S. & Febrian, N., HIDROLISIS BIOMASSA MIKROALGA Porphyridium cruentum MENGGUNAKAN ASAM (H2SO4 dan HNO3) DALAM PRODUKSI BIOETANOL. J. Kim. dan Kemasan, 41(1): 1–10 (2019).

Saleh, H. A., Saokani, J. & Rijal, S., Penentuan Nilai Kalor Serta Pengaruh Asam Klorida (Hcl) Terhadap Kadar Bioetanol Bonggol Pisang (Musa Paradisiacal). Al-Kimia, 4(1): 68–77 (2016).

Kolo, S. M. D., Wahyuningrum, D. & Hertadi, R., The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. Int. J. Microbiol., 2020: 1–11 (2020).

Yu, K. L., Chen, W. H., Sheen, H. K., Chang, J. S., Lin, C. S., Ong, H. C., Show, P. L., et al., Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel, 279(February): 118435 (2020).

Teh, Y. Y., Lee, K. T., Chen, W. H., Lin, S. C., Sheen, H. K. & Tan, I. S., Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour. Technol., 246: 20–27 (2017).

Kolo, S. M. D., Presson, J. & Amfotis, P., Produksi Bioetanol sebagai Energi Terbarukan dari Rumput Laut Ulva reticulata Asal Pulau Timor. ALCHEMY J. Penelit. Kim., 17(2): 159 (2021).

Sarjono, P. R., Mulyani, N. S., Noprastika, I., Ismiyarto., Ngadiwiyana. & Prasetya, N. B. A., PENGARUH WAKTU FERMENTASI TERHADAP AKTIVITAS Saccharomyces cerevisiae DALAM MENGHIDROLISIS ECENG GONDOK (Eichhornia crassipes). J. Penelit. Saintek, 26(2): 95–108 (2021).

Somaprabha, A., Saravanan, K. & Durairaj, K., EVALUATION AND PRODUCTION OF BIOETHANOL USING AGRICULTURAL WASTE WITH BANANA PSEUDOSTEM AND PEELS OF PINE APPLE AND BANANA PEEL. Int. Res. J. Mod. Eng. Technol. Sci., 4(12): 2023–2036 (2023).

Widyastuti, P., Pengolahan Limbah Kulit Singkong Sebagai Bahan Bakar Bioetanol melalui Proses Fermentasi. J. Kompetensi Tek., 11(1): 41–46 (2019).

Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., Sarazin, C., et al., Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew. Energy, 145(July): 1808–1816 (2020).

Dave, N., Varadavenkatesan, T., Selvaraj, R. & Vinayagam, R., Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. Sci. Total Environ., 791(June): 148429 (2021).

Kolo, S. M. D. & Sine, Y., Produksi Bioetanol dari Ampas Sorgum Lahan Kering dengan Perlakuan Awal Microwave Irradiasi. J. Saintek Lahan Kering, 2(2): 39–40 (2019).

Zhou, C., Zhao, J., Yagoub, A. E. G. A., Ma, H., Yu, X., Hu, J., Bao, X., et al., Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: Reaction kinetics and mechanism. Egypt. J. Pet., 26(2): 477–487 (2017).

Tyagi, S., Lee, K.-J., Mulla, S. I., Garg, N. & Chae, J.-C., Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives. Applied Microbiology and Bioengineering, (1): Elsevier Inc., (2019). doi:10.1016/b978-0-12-815407-6.00002-2

Kolo, S. M. D., Pardosi, L. & Baru, A. E., The Effect of Hydrolysis Time Using Microwave on Bioethanol Production from Sorghum Waste (Sorghum Bicolor L.). J. Sains dan Terap. Kim., 16(1): 28 (2022).

Malik Ibrahim, A., Febrian Pradana, A., Priyosakti, G., Arifin, M., Alawiyah, T. & Perliansyah, P., POTENSI TANAMAN PANDAN LAUT (Pandanus tectorius) DAN LIMBAH INDUSTRI GANDUM KOTA CILEGON SEBAGAI BAHAN BAKU SINTESIS BIOETANOL. J. Penelit. Has. Hutan, 38(2): 91–104 (2020).

Arifwan., Erwin. & Kartika, R., Pembuatan Bioetanol Dari Singkong Karet (Manihot glaziovii muell) Dengan Hidrolisis Enzimatik Dan Difermentasi Menggunakan Saccharomyces cerevisiae. J. At., 01(1): 10–12 (2016).

FITRIA, N. & LINDASARI, E., Optimasi Perolehan Bioetanol dari Kulit Nanas (Ananas cosmosus) dengan Penambahan Urea, Variasi Konsentrasi Inokulasi Starter dan Waktu Fermentasi. J. Reka Lingkung., 9(1): 1–10 (2020).

Susmanto, P., Yandriani, Y., Dania, B. & Ellen, E., Pengaruh Jenis Nutrient Dan Waktu Terhadap Efisiensi Substrat Dan Kinetika Reaksi Fermentasi Dalam Produksi Bioetanol Berbahan Baku Biji Durian. J. Integr. Proses, 9(2): 1–8 (2020).

Bahri, S., Aji, A. & Yani, F., Pembuatan Bioetanol dari Kulit Pisang Kepok dengan Cara Fermentasi menggunakan Ragi Roti. J. Teknol. Kim. Unimal, 7(2): 85 (2019).

Muin, R., Lestari, D. & Sari, T. W., Pengaruh Konsentrasi Asam Sulfat dan Waktu Fermentasi terhadap Kadar Bioetanol Yang Dihasilkan Dari Biji Alpukat. J. Tek. Kim., 20(4): 1–7 (2015).

Saidu, I., Danjuma, A. M. & Wakkala, A., Bioethanol Production and Proximate Compostion of Waste Potatoes. J. Energy Res. Rev., 8(3): 26–30 (2021).

Telussa, I., Fransina, E. G. & Singerin, J., Produksi Bioetanol dari Mikroalga Laut Ambon Chlorella sp. Galur TAD. J. Sains Dasar, 11(2): 63–69 (2022).

Bello, A. ., Jumare, F. I., Hussein, R. A., Haruna, Z. A., Nafiu, A. & Sanusi, A., SUSTAINABLE PRODUCTION OF BIOETHANOL FROM MAIZE BY SIMULTANEOUS SACCHARIFICATION AND FERMENTATION USING ACREMONIUM BUTYRI AND ZYMOMONAS. Sci. World J., 17(4): 538–541 (2022).

Kolo, S. M. D., Obenu, N. M. & Rohy, N. T., Pengaruh Perlakuan Awal Ampas Biji Jewawut (Setaria italica L.) dengan Microwave Irradiation Untuk Produksi Bioetanol. ALCHEMY J. Penelit. Kim., 18(2): 183 (2022).

Kolo, S. M. D., Obenu, N. M. & Tuas, M. Y. C., Pengaruh Pretreatment Makroalga Ulva Reticulata Menggunakan Microwave Irradiation Untuk Produksi Bioetanol. J. Kim., 16(2): 212 (2022).

Febriani, Y., Sidharta, B. R. & Pranata, F. S., Produksi Bioetanol Pati Umbi Talas (Colocasia esculenta (L.) Schott) dengan Variasi Konsentrasi Inokulum dan Waktu Fermentasi Zymomonas mobilis. Biota J. Ilm. Ilmu-Ilmu Hayati, 5(2): 92–98 (2020).

Abrina Anggraini, S. P. & Yuniningsih, S., Pemanfaatan Limbah Gula untuk Pembuatan Bioethanol yang dipengaruhi oleh Komposisi Khamir pada Proses Fermentasi. Reka Buana J. Ilm. Tek. Sipil dan Tek. Kim., 5(2): 74 (2020).

Downloads

Published

2023-03-24

How to Cite

Kolo, S. M. D., Obenu, N. M., Kefi, L. ., & Felicitas F.Fuel. (2023). Optimasi Proses Hidrolisis Rumput Laut Ulva Reticulata dengan Pelarut HNO3 untuk Produksi Bioetanol. Jurnal Riset Kimia, 14(1), 12–23. https://doi.org/10.25077/jrk.v14i1.574

Issue

Section

Articles

Citation Check