Pembuatan dan Karakterisasi BPAC (Banana Peels Activated Carbon) Sebagai Biosorben Logam Raksa (Hg) dengan Aktivator HCl

Authors

  • Putri Ade Rahma Yulis Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Islam Riau, Indonesia
  • Asyti Febliza Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Islam Riau, Indonesia

DOI:

https://doi.org/10.25077/jrk.v14i2.596

Keywords:

Banana Peels Activated Carbon (BPAC), Metal Mercury, Banana Peels Activated Carbon (BPAC), Metal Mercury, Water Pollution

Abstract

Based on the 2021 Central Statistics Agency (BPS) about environment, there is still a high level of pollution, especially pollution in water. The pollution is dominated by heavy metal contaminants. This research was carried out to make and characterized biosorbents which were activated into activated carbon from banana peel waste called BPAC (Banana Peels Activated Carbon) with HCl activator. Activated carbon has many advantages as an adsorbent with time and cost efficiency in absorbed heavy metals. Activated carbon from banana peels that has been formed was tested for its characterization included tests for water content, ash content, and iodine absorption and compared with SNI standard activated carbon quality with results of 3.9% water content, 6.2% ash content and iodine absorption 563.6 mg/g. The functional groups were tested by FT-IR (Fourier Transform-Infra Red) with the result spectrum at the peak of 3334 cm-1, 2921 cm-1,  2853 cm-1, 1575 cm-1, 1375 cm-1, and 1098 cm-1 which indicated the presence of functional groups such as (C-O); (C=O); (C-H); (O-H) of several compounds such as lignin, pectin, cellulose and galacturonic acid as active sites that can bind heavy metals such as mercury. Surface morphology of activated carbon was tested by SEM (Scanning Electron Microscopy) with 500x and 1000x magnification. Activated carbon that has been tested is then applied to artificial mercury metal waste to determine the adsorption power and effectiveness of the activated carbon. Mercury metal content before adsorption was 6.995 mg/L and after adsorption was 0.0084 mg/L which was measured used ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry). The percentage effectiveness of BPAC (Banana Peels Activated Carbon) reaches 99.87% with an adsorption capacity of 0.698 mg/g. Based on the results of this percentage it can be said that BPAC is effective to be used as a metal mercury biosorbent.

References

Maia, L. S., Duizit, L. D., Pinhatio, F. R. & Mulinari, D. R. Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal. Carbon Lett. (2021) doi:10.1007/s42823-021-00226-5.

Statistik(BPS), B. P. Jumlah Desa sesuai Pencemaran Lingkungan Hidup. (2021).

Yulis, P. A. R. Analisis Kadar Logam Merkuri (Hg) dan (pH) Air Sungai Kuantan Terdampak Penambangan Emas tanpa Izin (Peti). Orbital 2, 28–36 (2018).

Putri Ade Rahma Yulis, Desti, A. F. Analisis Kadar DO, BOD, dan COD Air Sungai Kuantan Terdampak Penambangan Emas Tanpa Izin. J. Bioterdidik Wahana Ekspresi Ilm. 6, (2018).

Yulis, P. A. R. & Desti 2. Penentuan Kadar Logam Berat Air Sungai Singingi Terdampak Penambangan Emas Tanpa Izin (Peti). J. Katalisator 5, 188–196 (2020).

Nopriadi. Effect of Illegal Gold Mining Activities on Social-Economic of Workers and Community Surrounding the Watershed in Kuantan Singingi, Indonesia. Int. J. Sci. Res. 5, 171–178 (2016).

Johar, O. A. Pencemaran Sungai Siak di Kota Pekanbaru dan Penegakan Hukum Pidana Lingkungan Olivia. Jispo 9, 489–501 (2019).

Putra, A. Y. fitri mairizki. Analisis Logam Berat Pada Air Tanah di Kecamatan Kubu Babussalam, Rokan Hilir, Riau. J. Katalisator 5, 47–53 (2020).

Salimi, A. & Roosta, A. Thermochimica Acta Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim. Acta 675, 134–139 (2019).

Enniya, I., Rghioui, L. & Jourani, A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Pharm. 7, 9–16 (2018).

Meili, L. et al. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Prog. Biophys. Mol. Biol. (2018) doi:10.1016/j.pbiomolbio.2018.07.011.

Bibaj, E. et al. Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 16, 667–680 (2019).

Ingole, R. S., Lataye, D. H. & Dhorabe, P. T. Adsorption of phenol onto Banana Peels Activated Carbon. KSCE J. Civ. Eng. 21, 100–110 (2017).

Mohammad, S., Ahmed, S., Badawi, A. & El-Desouki, D. Activated Carbon Derived from Egyptian Banana Peels for Removal of Cadmium from Water. J. Appl. Life Sci. Int. 3, 77–88 (2015).

Viena, V., Elvitriana & Nizar, M. Characterization of Activated Carbon Prepared from Banana Peels: Effect of Chemical Activators on the Adsorption of Gas Emissions. J. Phys. Conf. Ser. 1232, (2019).

Budiman;Hamidah;Hasria. Limbah Kulit Pisang Kepok (Musa Acuminate) sebagai Biofilter Zat Besi (Fe) dan Zat Kapur (CaCO3). Promot. J. Kesehat. Masy. 8, 152–158 (2018).

Permenkes. Rencana Aksi Nasional Pengendalian Dampak Kesehatan Akibat Pajanan Merkuri Tahun 2016-2020. (2016).

Narasiang, A. N., Lasut, M. T. & Kawung, N. J. Akumulasi Merkuri (Hg) Pada Ikan Di Teluk Manado. J. Pesisir Dan Laut Trop. 3, 8 (2015).

Stancheva, M., Makedonski, L. & Petrova, E. Determination of heavy metals (Pb, Cd, As and Hg) in Black Sea grey mullet (Mugil cephalus). Bulg. J. Agric. Sci. 19, 30–34 (2013).

Ekpete, O. A., Marcus, A. C. & Osi, V. Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem. J. Chem. 2017, (2017).

Jujur, P., Nur, M., Asy, M. & Nur, H. Heliyon SEM , XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 6, e03546 (2020).

Kaya, M. Preparation and TG / DTG , FT-IR , SEM , BET Surface Area , Iodine Number and Methylene Blue Number Analysis of Activated Carbon from Pistachio Shells by Chemical Activation. 1–13 (2017) doi:10.1515/ijcre-2017-0060.

Guo, J. et al. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials (Basel). 12, (2019).

Fabre, E., Lopes, C. B., Vale, C., Pereira, E. & Silva, C. M. Valuation of banana peels as an effective biosorbent for mercury removal under low environmental concentrations. Sci. Total Environ. 709, 135883 (2020).

Musafira; & Dzulkifli; Penyerapan Ion Logam Merkuri Menggunakan Arang Aktif Limbah Kulit Pisang Kepok (Musa paradisiaca Formatypica). KOVALEN J. Ris. Kim. 6, 39–44 (2020).

Imani, A. dan & Sukwika, T. Karbon Aktif Ampas Tebu sebagai Adsorben Penurun Kadar Besi dan Mangan Limbah Air Asam Tambang. J. Teknol. 13, 33–42 (2021).

Yulis, P. A. R. & Sari, Y. Kepok Banana Peels as Biosorbent for Mercury Sorption from Artificial Wastewater. JKPK (Jurnal Kim. dan Pendidik. Kim. 7, 64–75 (2022).

Safariyanti, S. J., Rahmalia, W. & Shofiyani, A. Sintesis dan Karakteristik Karbon Aktif Dari Tempurung Buah Nipah (Nypa fruticans) Menggunakan Aktivator Asam Klorida. J. Kim. Khatulistiwa 7, 41–46 (2018).

Sa’diyah, K. & Lusiani, C. E. Kualitas Karbon Aktif Kulit Pisang Kepok Menggunakan Aktivator Kimia dengan Variasi Konsentrasi dan Waktu Aktivasi. J. Tek. Kim. dan Lingkung. 6, 9 (2022).

Chafidz, A., Astuti, W., Hartanto, D., Mutia, A. S. & Sari, P. R. Preparation of activated carbon from banana peel waste for reducing air pollutant from motorcycle muffler. MATEC Web Conf. 154, 1–5 (2018).

Pathak, P. D. & Mandavgane, S. A. Journal of Environmental Chemical Engineering Preparation and characterization of raw and carbon from banana peel by microwave activation : Application in citric acid adsorption. Biochem. Pharmacol. 3, 2435–2447 (2015).

Ma, J. et al. Adsorption of methylene blue and Orange II pollutants on activated carbon prepared from banana peel. J. Porous Mater. 22, 301–311 (2015).

Yollanda, D., Nasra, E., Dewata, D. K. I. & Nizar, U. K. Pengaruh Ion Cu2+, Zn2+, Cd2+ dan Cr3+ terhadap peyerapan logam Pb2+ menggunakan kulit pisang kepok (Musa Paradisiaca L) …. Menara Ilmu XIII, 171–177 (2019).

Rahadi, B., Haji, A. T. S. & Robbaniyah, I. Analisis Penurunan Konsentrasi Methyl Orange Dengan Biosorben Kulit Pisang Cavendish (Musa Acuminata Cv. Cavendish). J. Sumberd. Alam dan Lingkung. 6, 29–35 (2019).

Satria, I., Putra, R., Alharissa, E. Z. & Rachma, H. A. Penurunan Kadar Pb ( II ) Dan Mn ( II ) Pada Sungai Code Dengan Adsorben Limbah Kulit Pisang. Semin. Nas. Tek. Kim. Ecosmart 78–89 (2018).

Arifiyana, D. & Devianti, V. A. Biosorpsi Logam Besi (Fe) dalam Media Limbah Cair Artifisial menggunakan Adsorben Kulit Pisang Kepok (Musa acuminate). J. Kim. Ris. 5, 1–8 (2020).

Zhang, X., Wang, X. & Chen, Z. Radioactive cobalt(II) removal from aqueous solutions using a reusable nanocomposite: Kinetic, isotherms, and mechanistic study. Int. J. Environ. Res. Public Health 14, (2017).

Sugumaran, P., Susan, V. P., Ravichandran, P. & Seshadri, S. Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix regia Fruit Pod. 3, 125–132 (2012).

Rahmi, R. & Sajidah. Pemanfaatan Adsorben Alami (Biosorben) Untuk Mengurangi Kadar Timbal(Pb) dalam Limbah Cair. Pros. Semin. Nas. Biot. 271–279 (2017).

Wardani, G. A. & Wulandari, W. T. Pemanfaatan Limbah Kulit Pisang Kepok (Musa acuminate) sebagai Biosorben Ion Timbal(II). J. Kim. Val. 4, 143–148 (2018).

Prastuti, O. P., Septiani, E. L. & Kurniati, Y. Banana Peel Activated Carbon in Removal of Dyes and Metals Ion in Textile Industrial Waste. 966, 204–209 (2019).

Nasir La Hasan ; Zakir, M; Budi, P. Desilikasi karbon aktif sekam padi sebagai adsorben hg pada limbah pengolahan emas di kabupaten buru propinsi maluku. Indones. Chim. Acta 7, 1–11 (2015).

Legiso dan Heni, J. Perbandingan Efektivitas Karbon Aktif Sekam Padi Dan Kulit Pisang Kepok Sebagai Adsorben Pada Pengolahan Air Sungai Enim. Semin. Nas. Sains dan Teknol. 2019 1–13 (2019).

Fatmawati, S. dan & Inayah, S. N. Arang Aktif Gambut sebagai Filter Logam Berat Mercury (Hg). J. Ilm. Sains 21, 63 (2021).

Ariani, D. dan & Nurhasanah. Analisis Kandungan TDS dan Mineral pada Air Hujan untuk Konsumsi dengan Penambahan Karbon Aktif Kulit Pisang Kepok (Musa acuminate L.). Prism. Fis. 8, 10 (2020).

Hanifah, H. N. dan & Hadisoebroto. Efektivitas Biokoagulan Cangkang Telur Ayam Ras dan Kulit Pisang Kepok (Musa Balbisiana ABB) dalam Menurunkan Turbiditas, TDS, dan TSS dari Limbah Cair Industri Farmasi. al-Kimiya 7, 47–54 (2020).

Mao, N. & Su, Y. Characterization of Activated Carbon Prepared From Banana Peels : Effect of Chemical Activators on the Adsorption of Gas Emissions Characterization of Activated Carbon Prepared From Banana Peels : Effect of Chemical Activators on the Adsorption of Gas Emissions. (2019) doi:10.1088/1742-6596/1232/1/012005.

Lestari, S. Pengaruh berat dan waktu kontak untuk adsorpsi Timbal(II) oleh adsorben dari kulit batang jambu biji (Psidium guava L.). J. Kim. Mulawarman 8, 7–10 (2010)

Downloads

Published

2023-10-17

How to Cite

Putri Ade Rahma Yulis, & Asyti Febliza. (2023). Pembuatan dan Karakterisasi BPAC (Banana Peels Activated Carbon) Sebagai Biosorben Logam Raksa (Hg) dengan Aktivator HCl. Jurnal Riset Kimia, 14(2), 118–130. https://doi.org/10.25077/jrk.v14i2.596

Issue

Section

Articles

Citation Check