Synthesis of Mg-doped TiO2 Using a Hydrothermal Method as Photoanode on Bixin-Sensitized Solar Cell


  • Winda Rahmalia Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Tanjungpura, Indonesia
  • Intan Syahbanu Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Tanjungpura, Indonesia
  • Nurlina Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Ayu Widya Sari Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia
  • Septiani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia



bixin, DSSC, Mg Doping, photoanode, band gap energy


Titanium dioxide (TiO2) with magnesium (Mg) doping for dye-sensitized solar cell (DSSC) photoanode application has been synthesized. DSSC components used in this study were photosensitizer (bixin), electrolyte (), cathode (platinum), and photoanode (Mg-TiO2). This research aims to determine the characteristics of Mg-doped TiO2 photoanode with variations in dopant concentration based on the results of XRD and DR/UV-Vis analysis, as well as to determine the maximum efficiency conversion energy of DSSC using Mg-doped TiO2 and undoped TiO2 as photoanodes. The synthesis of TiO2 and Mg-TiO2 was carried out using the hydrothermal method with variations in the concentration of Mg dopant of 0, 0.5, 1, and 2% based on the molar ratio. The presenceof 2% of Mg in anatase TiO2 paste decreased the TiO2 band gap from 3.15 to 2.60 eV. Analysis results show that adding Mg dopant decreased the crystal size. Mg dopants on TiO2 could also form new energy levels, which reduced the band gap energy of TiO2. In addition, the increased concentration of Mg dopants also shifted the absorption capacity of TiO2 from the ultra-violet (UV) wavelengths region to the visible light area. The maximum energy conversion efficiency of the DSSCs with Mg-doped TiO2 photoanode of 0.5, 1, and 2% are 0.045; 0.070, and 0.172%, respectively, where these three efficiency values are higher than undoped TiO2 (0.017%). The results proved that the presence of Mg dopants on the TiO2 photoanode can increase the efficiency of DSSC.


Tontapha, S., Uppachai, P. & Amornkitbamrung, V., Fabrication of Functional Materials for Dye-sensitized Solar Cells. Front. Energy Res., 9(April): 1–9 (2021).

Ananth, S., Vivek, P., Saravana Kumar, G. & Murugakoothan, P., Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 137: 345–350 (2015).

Sharma, K., Sharma, V. & Sharma, S. S., Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett., 13: (2018).

Alazoumi, S., Elhub, B., Awsha, A. A., Alazoumi, S. H. & Elhub, B., A Review on the development of TiO2 photoanode for Solar Applications. Albahit J. Appl. Sci., 2(2): 9–9 (2021).

Ruhane, T. A., Islam, M. T., Rahaman, M. S., Bhuiyan, M. M. H., Islam, J. M. M., Newaz, M. K., Khan, K. A., et al., Photo current enhancement of natural dye sensitized solar cell by optimizing dye extraction and its loading period. Optik (Stuttg)., 149: 174–183 (2017).

Khan, M. I., Farooq, W. A., Saleem, M., Bhatti, K. A., Atif, M. & Hanif, A., Phase change, band gap energy and electrical resistivity of Mg doped TiO2 multilayer thin films for dye sensitized solar cells applications. Ceram. Int., 45(17): 21436–21439 (2019).

Cui, Y., Zhang, L., Lv, K., Zhou, G. & Wang, Z. S., Low temperature preparation of TiO2 nanoparticle chains without hydrothermal treatment for highly efficient dye-sensitized solar cells. J. Mater. Chem. A, 3(8): 4477–4483 (2015).

Rahmalia, W., Silalahi, I. H., Usman, T., Fabre, J. F., Mouloungui, Z. & Zissis, G., Stability, reusability, and equivalent circuit of TiO2/treated metakaolinite-based dye-sensitized solar cell: effect of illumination intensity on V oc and I sc values. Mater. Renew. Sustain. Energy, 10(2): 1–10 (2021).

Widiatannur, U., Usman, T. & Rahmalia, W., 555-1711-1-Pb (1). 05(2655): (2020).

Neetu., Singh, S., Srivastava, P. & Bahadur, L., Hydrothermal synthesized Nd-doped TiO2 with Anatase and Brookite phases as highly improved photoanode for dye-sensitized solar cell. Sol. Energy, 208(July): 173–181 (2020).

Prakash, J., Samriti., Kumar, A., Dai, H., Janegitz, B. C., Krishnan, V., Swart, H. C., et al., Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Mater. Today Sustain., 13: 100066 (2021).

Ünlü, B. & Özacar, M., Effect of Cu and Mn amounts doped to TiO2 on the performance of DSSCs. Sol. Energy, 196(October 2019): 448–456 (2020).

Shakir, S., Abd-ur-Rehman, H. M., Yunus, K., Iwamoto, M. & Periasamy, V., Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J. Alloys Compd., 737: 740–747 (2018).

Lv, C., Lan, X., Wang, L., Yu, Q., Zhang, M., Sun, H. & Shi, J., Alkaline-earth-metal-doped TiO2 for enhanced photodegradation and H2 evolution: Insights into the mechanisms. Catal. Sci. Technol., 9(21): 6124–6135 (2019).

Athira, K., Merin, K. T., Raguram, T. & Rajni, K. S., Synthesis and characterization of Mg doped TiO2nanoparticles for photocatalytic applications. Mater. Today Proc., 33(xxxx): 2321–2327 (2020).

Mursal., Malahayati., Azmi, N. & Fatmiyah, S., Synthesis of TiO2-based photoelectrode and natural dye for dye sensitized solar cell (DSSC). J. Phys. Conf. Ser., 1882(1): (2021).

Wahab, H. S. & Hussain, A. A., Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles. J. Nanostructure Chem., 6(3): 261–274 (2016).

Nam, T. Van., Trang, N. & Cong, B., Mg-doped TiO2 for dye-sensitive solar cell: An electronic structure study. Proc. Natl. Conf. Theor. Phys, 37: 233–242 (2012).

Zhang, R., Zhou, Y., Peng, L., Li, X., Chen, S., Feng, X., Guan, Y., et al., Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO 2 core-shell structures. Sci. Rep., 6(January): 1–9 (2016).

Karkare, M. M., Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. Int. Nano Lett., 4(3): (2014).

Liu, J., Yang, H., Tan, W., Zhou, X. & Lin, Y., Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochim. Acta, 56(1): 396–400 (2010).

Giridhar, P. Venugopalan, A. Parimalan, R., A Review on Annatto Dye Extraction, Analysis and Processing – A Food Technology Perspective. J. Sci. Res. Reports, 3(2): 327–348 (2014).

Rios, A. D. O., Borsarelli, C. D. & Mercadante, A. Z., Thermal degradation kinetics of bixin in an aqueous model system. J. Agric. Food Chem., 53(6): 2307–2311 (2005).

Gómez-Ortíz, N. M., Vázquez-Maldonado, I. A., Pérez-Espadas, A. R., Mena-Rejón, G. J., Azamar-Barrios, J. A. & Oskam, G., Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells, 94(1): 40–44 (2010).

Rahmalia, W., Septiani., Naselia, U. A., Usman, T., Silalahi, I. H. & Mouloungui, Z., Performance improvements of bixin and metal-bixin complexes sensitized solar cells by 1-methyl-3-propylimidazolium iodide in electrolyte system. Indones. J. Chem., 21(3): 669–678 (2021).

Rahmalia, W., Fabre, J. F., Usman, T. & Mouloungui, Z., Aprotic solvents effect on the UV-visible absorption spectra of bixin. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 131: 455–460 (2014).

Rahmalia, W., Fabre, J.-F. & Mouloungui, Z., Effects of Cyclohexane/Acetone Ratio on Bixin Extraction Yield by Accelerated Solvent Extraction Method. Procedia Chem., 14: 455–464 (2015).

Llansola-Portoles, M. J., Pascal, A. A. & Robert, B., Electronic and vibrational properties of carotenoids: From in vitro to in vivo. J. R. Soc. Interface, 14(135): (2017).

Rodriguez, D., A Guide to Carotenoid Analysis in Foods. Life Sciences, (2001).

Rahimi, N., Pax, R. A. & Gray, E. M. A., Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem., 44(3): 86–105 (2016).

Kim, B. M., Rho, S. G. & Kang, C. H., Effects of TiO 2 structures in dye-sensitized solar cell. J. Nanosci. Nanotechnol., 11(2): 1515–1517 (2011).

Mousa, M. A., Khairy, M. & Mohamed, H. M., Dye-Sensitized Solar Cells Based on an N-Doped TiO2 and TiO2-Graphene Composite Electrode. J. Electron. Mater., 47(10): 6241–6250 (2018).

Kumar, N., Hazarika, S. N., Limbu, S., Boruah, R., Deb, P., Namsa, N. D. & Das, S. K., Hydrothermal synthesis of anatase titanium dioxide mesoporous microspheres and their antimicrobial activity. Microporous Mesoporous Mater., 213: 181–187 (2015).

Ulhaq, M. R. & Kusumawardani, C., The Effect of the Hydrothermal Time and Temperature in the Synthesis to the Properties of Nitrogen-doped TiO2. Indones. J. Chem. Environ., 5(1): 17–24 (2022).

Eka Sri Kunarti, et. a., Pengujian Aktivitas Komposit Fe2O3-SiO2 Sebagai Fotokatalis Pada Fotodegradasi 4-Klorofenol. Manusia dan Lingkungan. Kimia FMIPA UGM. Yogyakarta, 16(Maret): 54–64 (2009).

Zhang, J., Peng, W., Chen, Z., Chen, H. & Han, L., Effect of cerium doping in the TiO 2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C, 116(36): 19182–19190 (2012).

Yacoubi, B., Samet, L., Bennaceur, J., Lamouchi, A. & Chtourou, R., Materials Science in Semiconductor Processing Properties of transition metal doped-titania electrodes : Impact on efficiency of amorphous and nanocrystalline dye-sensitized solar cells. Mater. Sci. Semicond. Process., 30: 361–367 (2015).

Ahmed, M. I., The Effect of Optical Energy Gaps on the Efficiency for Dye Sensitized Solar Cells ( DSSC ) by using Gum Arabic Doped by CuO and ( Coumarin 500 , Ecrchrom Black , Rhodamin B and DDTTc ) Dyes. (December): (2019).




How to Cite

Winda Rahmalia, Intan Syahbanu, Nurlina, Ayu Widya Sari, & Septiani. (2023). Synthesis of Mg-doped TiO2 Using a Hydrothermal Method as Photoanode on Bixin-Sensitized Solar Cell. Jurnal Riset Kimia, 14(2), 198–208.




Citation Check