Studi Molecular Docking dan Evaluasi Farmakokinetik Senyawa Analog Pirazol Turunan Benzen-Sulfonilurea sebagai Inhibitor Enzim Aldose Reduktase and α-Glukosidase Menggunakan Pendekatan In Silico

Authors

  • Yuni Fatisa Department of Chemistry Education, Faculty of Tarbiyah and Keguruan, Universitas Islam Negeri Sultan Syarif Kasim, Kampar, Indonesia
  • Lisa Utami Department of Chemistry Education, Faculty of Tarbiyah and Keguruan, Universitas Islam Negeri Sultan Syarif Kasim, Kampar, Indonesia
  • Jufrizal Syahri Department of Chemistry, Faculty of Sciences and Mathematics, Muhammadiyah Riau University, Pekanbaru, Indonesia
  • Jasril Jasril Department of Chemistry, Faculty of Sciences and Mathematics, Riau University, Pekanbaru, Indonesia
  • Lazulva Lazulva Department of Chemistry Education, Faculty of Tarbiyah and Keguruan, Universitas Islam Negeri Sultan Syarif Kasim, Kampar, Indonesia

DOI:

https://doi.org/10.25077/jrk.v15i2.633

Keywords:

analogs derived benzene-sulfonylurea, α-glucosidase inhibitor, inhibitor aldose reductase, molecular docking

Abstract

The pyrazole scaffold modification in various chemical structures on several studies has shown various biopharmacological activities. This study aims to predict the potential inhibition of pyrazole analogs derived benzene-sulfonylurea (4A, 4B, 4E, 5A, 5C, 5D) against the α-glucosidase (3A4A) and aldose reductase (3RX2) enzymes based on a molecular docking approach using Molecular Operating Environment (MOE) 2020.0102 software and evaluate pharmacokinetic profile (ADMET). In this study, the six test compounds were obtained from previous studies that have been proven antihyperglycemic. The results showed that all the 3,5-disubstituted benzene-sulfonylurea derivative pyrazole analogs are predicted to have low inhibitory activity against the α-glucosidase enzyme. Further, all compounds showed good aldose reductase inhibitor activity and had lower binding free energy values ​​than tolrestat as the positive control (-6.82 kcal/mol). Compound 5C has the best potential inhibitory activity against the aldose reductase enzyme compared to the other test compounds, because it has the lowest binding free energy value (-8.76 kcal/mol) and interacts with important residues on the receptor forming four hydrogen bonds, namely the carbonyl group of SO2 with residues Trp111 and His110, and the carbonyl group of the amide with residues His110 and Tyr48, as well as 3 hydrophobic bonds, namely a pyrazole ring with residues Leu300, Trp219 and a furan ring with Phe122. ADMET properties of the compounds are also predicted. This information provides an opportunity for a 5C compound as an aldose reductase inhibitor agent to develop drug candidates with better and safer activities.

References

Thulé, P. M., Mechanisms of current therapies for diabetes mellitus type 2. Am. J. Physiol. - Adv. Physiol. Educ., 36(4): 275–283 (2012).

Dowarah, J. & Singh, V. P., Anti-diabetic drugs recent approaches and advancements. Bioorganic Med. Chem., 28(5): 115263 (2020).

Yin, Z., Zhang, W., Feng, F., Zhang, Y. & Kang, W., α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness, 3(3–4): 136–174 (2014).

Derosa, G. & Maffioli, P., α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci., 8(5): 899–906 (2012).

Salem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M., Molecular modelling and synthesis of spiroimidazolidine-2,4-diones with dual activities as hypoglycemic agents and selective inhibitors of aldose reductase. Bioorg. Chem., 79(April): 131–144 (2018).

Taj, S., Ashfaq, U. A., Aslam, S., Ahmad, M. & Bhatti, S. H., Alpha-glucosidase activity of novel pyrazolobenzothiazine 5,5-dioxide derivatives for the treatment of diabetes mellitus. Invitro combined with molecular docking approach. Biologia (Bratisl)., 74(11): 1523–1530 (2019).

Chaudhry, F., Ather, A. Q., Akhtar, M. J., Shaukat, A., Ashraf, M., al-Rashida, M., Munawar, M. A., et al., Green synthesis, inhibition studies of yeast α-glucosidase and molecular docking of pyrazolylpyridazine amines. Bioorg. Chem., 71: 170–180 (2017).

Yin, L., Zhang, M. & He, T., Design and development of novel thiazole-sulfonamide derivatives as a protective agent against diabetic cataract in Wistar rats via inhibition of aldose reductase. Heterocycl. Commun., 27(1): 63–70 (2021).

Demir, Y. & Köksal, Z., Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes. Arch. Physiol. Biochem., 0(0): 1–6 (2020).

Faidallah, H. M., Khan, K. A. & Asiri, A. M., Synthesis and biological evaluation of new 3-trifluoromethylpyrazolesulfonyl-urea and thiourea derivatives as antidiabetic and antimicrobial agents. J. Fluor. Chem., 132(2): 131–137 (2011).

Frimayanti, N., Iskandar, B., Putri, R. D., Tinggi, S., Farmasi, I., Kamboja, J. & Panam, S. B., Docking Studies of Chalcone Analogue Compounds as Inhibitors for Breast Cancer. 11(2): 31–35 (2019).

Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R. & Preissner, R., ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 42(W1): 53–58 (2014).

Pinzi, L. & Rastelli, G., Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Siences, 20(18): 1–23 (2019).

Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F. & Khan, K. M., Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem., 77: 586–592 (2018).

Al-Salahi, R., Ahmad, R., Anouar, E., Iwana Nor Azman, N. I., Marzouk, M. & Abuelizz, H. A., 3-Benzyl(phenethyl)-2-thioxobenzo[g]quinazolines as a new class of potent α-glucosidase inhibitors: Synthesis and molecular docking study. Future Med. Chem., 10(16): 1889–1905 (2018).

Liu, Y., Zhan, L., Xu, C., Jiang, H., Zhu, C., Sun, L., Sun, C., et al., α-Glucosidase inhibitors from Chinese bayberry (: Morella rubra Sieb. et Zucc.) fruit: Molecular docking and interaction mechanism of flavonols with different B-ring hydroxylations. RSC Adv., 10(49): 29347–29361 (2020).

Imran, S., Taha, M., Ismail, N. H., Kashif, S. M., Rahim, F., Jamil, W., Hariono, M., et al., Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 105: 156–170 (2015).

Braun, C., Brayer, G. D. & Withers, S. G., Mechanism-based inhibition of yeast α-glucosidase and human pancreatic α-amylase by a new class of inhibitors: 2-Deoxy-2,2-difluoro-α-glycosides. J. Biol. Chem., 270(45): 26778–26781 (1995).

Moghimi, S., Toolabi, M., Salarinejad, S., Firoozpour, L., Sadat Ebrahimi, S. E., Safari, F., Mojtabavi, S., et al., Design and synthesis of novel pyridazine N-aryl acetamides: In-vitro evaluation of α-glucosidase inhibition, docking, and kinetic studies. Bioorg. Chem., 102(June): 104071 (2020).

Zheng, X., Zhang, L., Zhai, J., Chen, Y., Luo, H. & Hu, X., The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase. FEBS Lett., 586(1): 55–59 (2012).

Iqbal, Z., Morahan, G., Arooj, M., Sobolev, A. N. & Hameed, S., Synthesis of new arylsulfonylspiroimidazolidine-2ʹ,4ʹ-diones and study of their effect on stimulation of insulin release from MIN6 cell line, inhibition of human aldose reductase, sorbitol accumulations in various tissues and oxidative stress. Eur. J. Med. Chem., 168: 154–175 (2019).

El-Kabbani, O., Ruiz, F., Darmanin, C. & Chung, R. P.-T., Aldose reductase structures: implications for mechanism and inhibition. Cell. Mol. Life Sci. C., 61(7): 750–762 (2004).

Urzhumtsev, A., Tête-Favier, F., Mitschler, A., Barbanton, J., Barth, P., Urzhumtseva, L., Biellmann, J. F., et al., A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure, 5(5): 601–612 (1997).

Cachau, R., Howard, E., Barth, P., Mitschler, A., Chevrier, B., Lamour, V., Joachimiak, A., et al., Model of the catalytic mechanism of human aldose reductase based on quantum chemical calculations. J. Phys. IVFrance, 10: (2000).

Frimayanti, N., Iskandar, B., Yaeghoobi, M., Han, H. C., Zain, S. M., Yusof, R. & Rahman, N. A., Docking, synthesis and bioassay studies of imine derivatives as potential inhibitors for dengue NS2B/ NS3 serine protease. Asian Pacific J. Trop. Dis., 7(12): 792–796 (2017).

Yaseen, R., Pushpalatha, H., Reddy, G. B., Ismael, A., Ahmed, A., Dheyaa, A., Ovais, S., et al., Design and synthesis of pyridazinone-substituted benzenesulphonylurea derivatives as anti-hyperglycaemic agents and inhibitors of aldose reductase – an enzyme embroiled in diabetic complications. J. Enzyme Inhib. Med. Chem., 31(6): 1415–1427 (2016).

Syahputra, G., Ambarsari L. & T, S., Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim12-lipoksigenase. Biofisika, 10(1): 55–67 (2014).

Frimayanti, N., Yaeghoobi, M., Ikhtiarudin, I., Rizki, D. & Putri, W., Insight on the In Silico Study and Biological Activity Assay Molecular docking. Chiang Mai Univ. J. Nat. Sci., 20(1): 1–11 (2021).

Dholakia, J., Prabhakar, B. & Shende, P., Strategies for the delivery of antidiabetic drugs via intranasal route. Int. J. Pharm., 608(September): 121068 (2021).

Shin, D. S., Seo, H., Yang, J. Y., Joo, J., Im, S. H., Kim, S. S., Kim, S. K., et al., Quantitative Evaluation of Cytochrome P450 3A4 Inhibition and Hepatotoxicity in HepaRG 3-D Spheroids. Int. J. Toxicol., 37(5): 393–403 (2018).

Downloads

Published

2024-09-30

How to Cite

Fatisa, Y., Utami, L., Syahri, J., Jasril, J., & Lazulva, L. (2024). Studi Molecular Docking dan Evaluasi Farmakokinetik Senyawa Analog Pirazol Turunan Benzen-Sulfonilurea sebagai Inhibitor Enzim Aldose Reduktase and α-Glukosidase Menggunakan Pendekatan In Silico. Jurnal Riset Kimia, 15(2), 11–26. https://doi.org/10.25077/jrk.v15i2.633

Issue

Section

Articles

Citation Check