The Density Functional Tight Binding (DFTB) Approach for Investigating Vacancy and Doping in Graphene as Hydrogen Storage

Authors

  • Yuniawan Hidayat Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia https://orcid.org/0000-0003-2258-5292
  • Fitria Rahmawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Khoirina Dwi Nugrahaningtyas Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
  • Paulus Bagus Swandito Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia

DOI:

https://doi.org/10.25077/jrk.v15i1.635

Keywords:

DFTB, graphene, graphene defects, hydrogen gas, hydrogen storage

Abstract

A study on graphene defects for hydrogen storage has been successfully conducted using the Density Functional Tight Binding (DFTB) approach. The research aimed to modify solid materials for hydrogen storage. A 4 × 4 × 1 unit cell was used as the basis, while the supercell used for sampling was enlarged to 40 × 40 × 1. The analyzed data included changes in Density of States (DOS), Fermi level shifts, electronic band structures, formation energy, adsorption energy, and isosurfaces for each graphene orientation. It has been observed that modifying the surface structure of graphene can alter the electronic properties of graphene. This is indicated by shifts in DOS intensity, characterized by increased electronic intensity around the Fermi level total density charge different. The interaction energy between graphene and hydrogen gas has been determined to be -0.0155 eV for H-epoxy graphene, -0.4941 eV for H-monovacancy graphene, and -0.0424 eV for HN-monovacancy graphene. The presence of the vacancy increase the potential to adsorp hydrogen.

References

Demirel, Y., Green Energy and Technology. Green Energy and Technology, BENTHAM SCIENCE PUBLISHERS, (2006). doi:10.2174/97816080528511060101

Yu, K., Li, J., Qi, H. & Liang, C., High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diam. Relat. Mater., 86(January): 139–145 (2018).

Tachikawa, H. & Iyama, T., Mechanism of Hydrogen Storage in the Graphene Nanoflake–Lithium–H 2 System. J. Phys. Chem. C, 123(14): 8709–8716 (2019).

Hosseini, S. V., Arabi, H. & Kompany, A., Silicon atom and silicon oxide molecule, within the metallic and semiconducting carbon nanotubes as promising centers candidates for hydrogen adsorption: A DFT theoretical study. Int. J. Hydrogen Energy, 43(39): 18306–18315 (2018).

Briggs, N. M., Barrett, L., Wegener, E. C., Herrera, L. V., Gomez, L. A., Miller, J. T. & Crossley, S. P., Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways. Nat. Commun., 9(1): (2018).

Ahadi, Z., Shadman, M., Yeganegi, S. & Asgari, F., Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: A grand canonical Monte Carlo study. J. Mol. Model., 18(7): 2981–2991 (2012).

Lee, S. H. & Jhi, S. H., A first-principles study of alkali-metal-decorated graphyne as oxygen-tolerant hydrogen storage media. Carbon N. Y., C(81): 418–425 (2015).

Kaiser, A., Renzler, M., Kranabetter, L., Schwärzler, M., Parajuli, R., Echt, O. & Scheier, P., On enhanced hydrogen adsorption on alkali (cesium) doped C60 and effects of the quantum nature of the H2 molecule on physisorption energies. Int. J. Hydrogen Energy, 42(5): 3078–3086 (2017).

Cui, H., Zhang, Y., Tian, W., Wang, Y., Liu, T., Chen, Y., Shan, P., et al., A study on hydrogen storage performance of Ti decorated vacancies graphene structure on the first principle. RSC Adv., 11(23): 13912–13918 (2021).

Yahya, M. S., Sunnardianto, G. K. & Handayani, M., The effect of single and double vacancy on hydrogenated graphene for hydrogen storage application. IOP Conf. Ser. Mater. Sci. Eng., 541(1): 012005 (2019).

Zhang, L. & Xia, Z., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C, 115(22): 11170–11176 (2011).

Hidayat, Y., Rahmawati, F., Heraldy, E., Nugrahaningtyas, K. & Nurcahyo, I., The Effect Of Sulphur (S) Doping and K+ Adsorption To The Electronic Properties Of Graphene: A Study By DFTB Method. J. Ris. Kim., 13(2): 130–137 (2022).

Ketabi, N., de Boer, T., Karakaya, M., Zhu, J., Podila, R., Rao, A. M., Kurmaev, E. Z., et al., Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Adv., 6(61): 56721–56727 (2016).

Joucken, F., Tison, Y., Le Fèvre, P., Tejeda, A., Taleb-Ibrahimi, A., Conrad, E., Repain, V., et al., Charge transfer and electronic doping in nitrogen-doped graphene. Sci. Rep., 5(1): 14564 (2015).

Maeda, K., Ishimaki, K., Tokunaga, Y., Lu, D. & Eguchi, M., Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation. Angew. Chemie Int. Ed., 55(29): 8309–8313 (2016).

Castelli, I. E., Man, I.-C., Soriga, S.-G., Parvulescu, V., Halck, N. B. & Rossmeisl, J., Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments. J. Phys. Chem. C, 121(34): 18608–18614 (2017).

Persson, K., Materials Data on C (SG:194) by Materials Project. (2014). doi:10.17188/1208406

Momma, K. & Izumi, F., VESTA : a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr., 41(3): 653–658 (2008).

Hidayat, Y., Rahmawati, F., Nugrahaningtyas, K. D., Althof Abiyyi, A., Erlangga, M. Z. & Pujiastuti, N., Exploring the electronic properties of N-doped graphene on graphitic and pyridinic models and its interaction with K. Aust. J. Chem., 75(5): 325–330 (2022).

Hidayat, Y., Rahmawati, F. & Nugrahaningtyas, K. D., Does Divacancy Defect Combine with N,S-Codoping Enhance the Electronic Properties of Graphene to Its Interaction with K+ Ion? J. Mol., 18(1): 140–146 (2023).

Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., et al., DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys., 152(12): 124101 (2020).

Burian, A., Dore, J. C. & Jurkiewicz, K., Structural studies of carbons by neutron and x-ray scattering. Reports Prog. Phys., 82(1): 016501 (2018).

Buades, B., Moonshiram, D., Sidiropoulos, T. P. H., León, I., Schmidt, P., Pi, I., Di Palo, N., et al., Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica, 5(5): 502 (2018).

Shibazaki, Y., Kono, Y. & Shen, G., Compressed glassy carbon maintaining graphite-like structure with linkage formation between graphene layers. Sci. Rep., 9(1): 7531 (2019).

Yu, Y. X., Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Phys. Chem. Chem. Phys., 15(39): 16819–16827 (2013).

Yang, M., Wang, L., Li, M., Hou, T. & Li, Y., Structural stability and O 2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: A first-principles study. AIP Adv., 5(6): 067136 (2015).

Chaban, V. V. & Prezhdo, O. V., Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis. Nanoscale, 7(40): 17055–17062 (2015).

Prias, J., Mejía Mendoza, L., Velasco, M., Perea, J., Aspuru-Guzik, A., Acosta Minoli, C., Prías-Barragán, J. J., et al., Graphene Oxide: Comparisons between Experimental and Computational Simulation of HR-TEM Images. 0–20 (2022).

Thuy Tran, N. T., Lin, S.-Y., Glukhova, O. E. & Lin, M.-F., π-Bonding-dominated energy gaps in graphene oxide. RSC Adv., 6(29): 24458–24463 (2016).

Prasert, K. & Sutthibutpong, T., Unveiling the Fundamental Mechanisms of Graphene Oxide Selectivity on the Ascorbic Acid, Dopamine, and Uric Acid by Density Functional Theory Calculations and Charge Population Analysis. Sensors, 21(8): 2773 (2021).

Mirzaei, A., Bharath, S. P., Kim, J.-Y., Pawar, K. K., Kim, H. W. & Kim, S. S., N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview. Chemosensors, 11(6): 334 (2023).

Deokar, G., Jin, J., Schwingenschlögl, U. & Costa, P. M. F. J., Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications. npj 2D Mater. Appl. 2022 61, 6(1): 1–17 (2022).

Downloads

Published

2024-03-29

How to Cite

Hidayat, Y., Rahmawati, F., Dwi Nugrahaningtyas, K., & Bagus Swandito, P. . (2024). The Density Functional Tight Binding (DFTB) Approach for Investigating Vacancy and Doping in Graphene as Hydrogen Storage. Jurnal Riset Kimia, 15(1), 8–16. https://doi.org/10.25077/jrk.v15i1.635

Issue

Section

Articles

Citation Check