Sintesis dan Karakterisasi Solid Polymer Electrolyte (SPE) Berbasis Nanofiber Selulosa untuk Menunjang Baterai Litium Berdensitas Tinggi dan Ramah Lingkungan

Authors

  • Ahmad Ali Muckharom Departemen Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Rizky Putra Adithia Departemen Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Putri Diah Wahyu Karimah Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Tabah Ditalistya Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Rahmad Nuryanto Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia

DOI:

https://doi.org/10.25077/jrk.v15i2.672

Keywords:

cellulose nanofiber, lithium battery, solid polymer electrolyte

Abstract

Lithium battery as one of the energy storage has two important elements, namely electrodes and electrolyte. Electrolyte is a part of the battery element that has undergone many developments. In this study, the manufacture of electrolytes in the form of Solid Polymer Electrolyte (SPE) was carried out by utilizing the abundant availability of nata de coco. The nanofibrous cellulose structure in Bacterial Cellulose (BC) nata de coco has the advantages of good porosity, flexibility in surface functionality, compact porous structure that provides abundant ion pathways and hetero atoms (oxygen atoms) with free electron pairs that facilitate ionic conduction. The SPE synthesis process was carried out by varying the soaking time of nata de coco in ethanol, namely 1, 2 and 3 days to determine the structure with optimal results. FTIR characterization results show the synthesis of cellulose nanofiber has the same groups as commercial cellulose groups in the form of O-H, C-H, C=O and C-O. CV characterization results show the SPE electrolyte has good redox properties, especially in the 2-day variation with the highest specific capacitance. The EIS test showed the lowest resistance in the 1-day variation sample with a conductivity of 0.017 ohm-1.

References

I. Boumanchar et al., “Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques,” Waste Management and Research, vol. 37, no. 6, pp. 578–589, Jun. 2019, doi: 10.1177/0734242X18816797.”

M. Karnan, K. Subramani, P. K. Srividhya, and M. Sathish, “Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes,” Electrochim Acta, vol. 228, pp. 586–596, Feb. 2017, doi: 10.1016/j.electacta.2017.01.095.

Y. Guo, L. Zhang, Y. Liu, and S. Guo, “Almond Shell-Derived Carbons under Low-Temperature Activation with UltraHigh Surface Area and Superior Performance for Supercapacitors,” ChemistrySelect, vol. 4, no. 43, pp. 12472–12478, Nov. 2019, doi: 10.1002/slct.201903480.

P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, “Anode materials for lithium-ion batteries: A review,” Applied Surface Science Advances, vol. 9. Elsevier B.V., Jun. 01, 2022. doi: 10.1016/j.apsadv.2022.100233.

F. A. Perdana, “Baterai Lithium,” INKUIRI: Jurnal Pendidikan IPA, vol. 9, no. 2, p. 113, Apr. 2021, doi: 10.20961/inkuiri.v9i2.50082.

J. Wang, J. He, D. Kan, K. Chen, M. Song, and W. Huo, “MXene Film Prepared by Vacuum-Assisted Filtration: Properties and

Applications,” Crystals, vol. 12, no. 8. MDPI, Aug. 01, 2022. doi: 10.3390/cryst12081034.

K. Borzutzki, J. Thienenkamp, M. Diehl, M. Winter, and G. Brunklaus, “Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries,” J Mater Chem A Mater, vol. 7, no. 1, pp. 188–201, 2019, doi: 10.1039/c8ta08391f.

Y. Gu, S. Fang, L. Yang, and S. ichi Hirano, “A safe electrolyte for high-performance lithium-ion batteries containing lithium

difluoro(oxalato)borate, gammabutyrolactone and non-flammable hydrofluoroether,” Electrochim Acta, vol. 394, Oct. 2021, doi: 10.1016/j.electacta.2021.139120.

P. Fan et al., “High Performance Composite Polymer Electrolytes for Lithium-Ion Batteries,” Advanced Functional Materials, vol. 31, no. 23. John Wiley and Sons Inc, Jun. 01, 2021. doi: 10.1002/adfm.202101380.

S. Chen, K. Wen, J. Fan, Y. Bando, and D. Golberg, “Progress and future prospects of high-voltage and high-safety electrolytes in

advanced lithium batteries: From liquid to solid electrolytes,” Journal of Materials Chemistry A, vol. 6, no. 25. Royal Society of Chemistry, pp. 11631–11663, 2018. doi: 10.1039/c8ta03358g.

Y. L. Ni’Mah, M. Y. Cheng, J. H. Cheng, J. Rick, and B. J. Hwang, “Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries,” J Power Sources, vol. 278, pp. 375–381, Mar. 2015, doi: 10.1016/j.jpowsour.2014.11.047.

D. Lasrado, S. Ahankari, and K. Kar, “Nanocellulose-based polymer composites for energy applications—A review,” Journal of Applied Polymer Science, vol. 137, no. 27. John Wiley and Sons Inc., Jul. 15, 2020. doi: 10.1002/app.48959.

Q. Sabrina et al., “Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion

battery applications,” RSC Adv, vol. 11, no. 37, pp. 22929–22936, Jun. 2021, doi: 10.1039/d1ra03480d.

Downloads

Published

2024-09-30

How to Cite

Muckharom, A. A. ., Adithia, R. P. ., Karimah, P. D. W. ., Ditalistya, T. ., & Nuryanto, R. . (2024). Sintesis dan Karakterisasi Solid Polymer Electrolyte (SPE) Berbasis Nanofiber Selulosa untuk Menunjang Baterai Litium Berdensitas Tinggi dan Ramah Lingkungan. Jurnal Riset Kimia, 15(2), 1–10. https://doi.org/10.25077/jrk.v15i2.672

Issue

Section

Articles

Citation Check