Pemanfaatan Limbah Ban Bekas untuk Sintesis Nanokomposit MnO2/C dengan Metode Hidrotermal sebagai Material Superkapasitor

Authors

  • Rizky Putra Adithia Departemen Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Ahmad Ali Muckharom Departemen Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Tabah Ditalistya Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Putri Diah Wahyu Karimah Departemen Kimia, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
  • Agus Subagio Departemen Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia

DOI:

https://doi.org/10.25077/jrk.v15i2.682

Keywords:

supercapacitors, waste tires, carbon, nanocomposite, MnO2/C

Abstract

Activated carbon from waste tires is used as MnO2 metal oxide doping in making MnO2/C-based nanocomposites into high-density and environmentally friendly supercapacitor electrodes. The MnO2/C nanocomposite synthesis process was carried out using the hydrothermal method by varying the mass of activated carbon by 1.25 g, 2.5 g and 3.75 g to determine the optimum results. Based on the results of research that has been carried out, it shows that MnO2/C can be used as a high density supercapacitor electrode. This is in accordance with the XRD test results which show that the MnO2 nanocomposite with the addition of C was successfully synthesized and has an orthorhombic crystalline phase. The SEM test results show that the material has almost the same morphology, namely many protrusions which make each particle have high roughness. The most optimal results were obtained from the MnO2/C-50 variation because it has the highest C element content, namely 39.93%, so it has the highest capacitance value of 5.791 f/g during the CV test. The GCD test shows that electrodes with a carbon variation of 2.5 g have a much longer and constant charge-discharge measurement time. In the EIS test, this variation shows a resistance value that is not too high and not too small, materials that have good storage capacity or capacity have moderate resistance.

References

Y. Jiang et al., “Preparation and electrochemical properties of mesoporous manganese dioxide-based composite electrode for supercapacitor,” J Nanosci Nanotechnol, vol. 17, no. 1, pp. 507–516, 2017, doi: 10.1166/jnn.2017.12430.

M. S. Asl et al., “Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: Recent progress and future perspectives,” Jun. 01, 2022, Elsevier Ltd. doi: 10.1016/j.est.2022.104223.

L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, “A review of supercapacitor modeling, estimation, and applications: A control/management perspective,” Jan. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2017.05.283.

X. Li et al., “Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-deposited on Graphite Paper as Supercapacitor Electrodes,” J Electron Mater, vol. 51, no. 6, pp. 2982–2994, Jun. 2022, doi: 10.1007/s11664-022-09575-x.

A. Muzaffar, M. B. Ahamed, K. Deshmukh, and J. Thirumalai, “A review on recent advances in hybrid supercapacitors: Design, fabrication and applications,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2018.10.026.

K. K. Patel, T. Singhal, V. Pandey, T. P. Sumangala, and M. S. Sreekanth, “Evolution and recent developments of high performance electrode material for supercapacitors: A review,” Dec. 15, 2021, Elsevier Ltd. doi: 10.1016/j.est.2021.103366.

] S. Zhang, L. Li, Y. Liu, and Q. Li, “Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors,” Carbohydr Polym, vol. 326, Feb. 2024, doi: 10.1016/j.carbpol.2023.121661.

X. Wang, J. Chu, H. J. Yan, and H. K. Zhang, “Synthesis and characterization of MnO2/Eggplant carbon composite for enhanced supercapacitors,” Heliyon, vol. 8, no. 9, Sep. 2022, doi: 10.1016/j.heliyon.2022.e10631.

] Y. Wang et al., “Recent progress in carbon-based materials for supercapacitor electrodes: a review,” Jan. 01, 2021, Springer. doi: 10.1007/s10853-020-05157-6.

W. Raza et al., “Recent advancements in supercapacitor technology,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.nanoen.2018.08.013.

B. K. Saikia, S. M. Benoy, M. Bora, J. Tamuly, M. Pandey, and D. Bhattacharya, “A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials,” Dec. 15, 2020, Elsevier Ltd. doi: 10.1016/j.fuel.2020.118796.

J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, “Recent progress of biomass-derived carbon materials for supercapacitors,” Mar. 01, 2020, Elsevier B.V. doi: 10.1016/j.jpowsour.2020.227794.

E. Meyer, A. Bede, D. Mutukwa, R. Taziwa, and N. Zingwe, “Optimization, and analysis of carbon supported VS2 nanocomposites as potential electrodes in supercapacitors,” J Energy Storage, vol. 27, Feb. 2020, doi: 10.1016/j.est.2019.101074.

S. K. Kim, I. J. Park, D. Y. Lee, and J. G. Kim, “Influence of surface roughness on the electrochemical behavior of carbon steel,” J Appl Electrochem, vol. 43, no. 5, pp. 507–514, May 2013, doi: 10.1007/s10800-013-0534-5.

M. Alzaid, F. Alsalh, and M. Z. Iqbal, “Biomass derived activated carbon based hybrid supercapacitors,” J Energy Storage, vol. 40, Aug. 2021, doi: 10.1016/j.est.2021.102751.

Downloads

Published

2024-09-30

How to Cite

Adithia, R. P., Muckharom, A. A. ., Ditalistya, T., Karimah, P. D. W. ., & Subagio, A. . (2024). Pemanfaatan Limbah Ban Bekas untuk Sintesis Nanokomposit MnO2/C dengan Metode Hidrotermal sebagai Material Superkapasitor. Jurnal Riset Kimia, 15(2), 106–115. https://doi.org/10.25077/jrk.v15i2.682

Issue

Section

Articles

Citation Check