Profile of a Composite Based on Bacterial Cellulose and Polyvinyl Alcohol as a Drug Release Matrix for Tetracycline Hydrochloride
DOI:
https://doi.org/10.25077/jrk.v15i2.692Keywords:
bacterial cellulose, polyvinyl alcohol, graphite, TiO2, tetracycline hydrochlorideAbstract
Bacterial cellulose (BC) is a natural polymer with good mechanical properties and hydrophilicity. Polyvinyl alcohol (PVA) is a synthetic polymer widely used in medicine. Both have been researched for their potential in drug release and acceptance. This study aims to determine the role of BC and PVA as drug release matrices for tetracycline hydrochloride (TCH), with additional fillers such as graphite (G) and TiO2. The results showed that the composites with BC matrix had lower mechanical properties than those with PVA matrix, with tensile strength values of 6.4075 and 17.446 MPa, respectively. However, the BC matrix was superior in porosity and swelling ability. The drug release testing of TCH from the composites showed that the appropriate model to describe drug release in BC matrix composites was in zero order, while the PVA matrix was in first order. The antibacterial activity of the composites on both matrices was tested against Staphylococcus aureus. The results indicate that both composites have potential applications in promising biomedical fields.
References
Adepu, S. & Ramakrishna. S., Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules., 26(19): 1-45 (2021). doi: 10.3390/molecules26195905.
Rouabhia, M., Asselin, J., Tazi, N., Messaddeq, Y., Levinson, D., & Zhang, Z., Production of Biocompatible and Antimicrobial Bacterial Cellulose Polymers Functionalized by RGDC Grafting Groups and Gentamicin. ACS Appl Mater Interfaces., 6(3): 1439–1446 (2014). doi: 10.1021/am4027983.
Alavarse, A. C., Silva. F. W. O., Colque, J. T., Silva, V. M., Prieto, T., Venancio, E. C., & Bonvent, J. J., Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA And Chitosan For Wound Dressing. Materials Science and Engineering C., 77(1): 271–281(2017). doi: 10.1016/j.msec.2017.03.199.
Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Ariff, A. B., Saad, W. Z., Navaderi, M., & Mohamad, R., Production and Status of Bacterial Cellulose in Biomedical Engineering. Nanomaterials., 7(9): 1-26 (2017). doi: 10.3390/nano7090257.
Baker, M. I, Walsh, S. P., Schwartz, Z., & Boyan, B. D., A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials., 100 B(5): 1451–1457 (2012). doi: 10.1002/jbm.b.32694.
Leitão, A. F., Silva, J. P., Dourado, F. & Gama, M., Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite. Materials., 6(5): 1956–1966 (2013), doi: 10.3390/ma6051956.
Busuioc, C., Isopencu, G. O., & Deleanu, I. M., Bacterial Cellulose–Polyvinyl Alcohol Based Complex Composites for Controlled Drug Release. Applied Sciences (Switzerland)., 13(2):1–13(2023).doi: 10.3390/app13021015.
Shao, W., Liu, H., Wang, S., Wu, J., Huang, M., Min, H., & Liu, X., Controlled Release and Antibacterial Activity of Tetracycline Hydrochloride-Loaded Bacterial Cellulose Composite Membranes. Carbohydr Polym., 145(1): 114–120 (2016). doi: 10.1016/j.carbpol.2016.02.065.
Manurung, R., Simanjuntak, S., Sembiring, J., Zaluku, E. C., Napitupulu, R. A. M., & Sihombing, S., Analisa Kekuatan Bahan Komposit Yang Diperkuat Serat Bambu Menggunakan Resin Polyester dengan Memvariasikan Susunan Serat Secara Acak dan Lurus Memanjang. SjoME., 2(1): 28-35 (2020). doi: 10.36655/sprocket.v2il.296
Aritonang, H. F., Wulandari, R., & Wuntu, A. D., Synthesis and Characterization of Bacterial Cellulose/Nano-Graphite Nanocomposite Membranes. Macromol Symp., 391(1): 1–7 (2020). doi: 10.1002/masy.201900145.
Sharma, D., Kumari, M., & Dhayal, V., Fabrication and Characterization of Cellulose/PVA/TiO2 Nanocomposite Thin Film as a Photocatalyst. Materials Today: Proceedings., 43(1): 2970–2974 (2021). doi: 10.1016/j.matpr.2021.01.323.
Liauw, C. M., Vaidya, M., Slate, A. J., Hickey, N. A., Ryder, S., Periñán, E. M., McBain, A. J., Banks, C. E., Whitehead, A., Analysis of Cellular Damage Resulting from Exposure of Bacteria to Graphene Oxide and Hybrids Using Fourier Transform Infrared Spectroscopy. Antibiotics., 12(4): 1-20 (2023). doi: 10.3390/antibiotics12040776.
Pathakoti, K., Manubolu, M., & Hwang, H.-M., Effect of Size and Crystalline Phase of TiO2 Nanoparticles on Photocatalytic Inactivation of Escherichia coli. J Nanosci Nanotechnol., 19(12): 8172–8179 (2019). doi: 10.1166/jnn.2019.16757.
Zhang, L., Zheng, S., Zhong, L., Wang, Y., Zhang, X., & Xue, J., Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar-Nanosilver Antibacterial Composite Membranes. Applied Sciences (Switzerland)., 10(3): 1-13 (2020). doi: 10.3390/app10030752.
Maulana, J., Suryanto, H., & Aminnudin, Y., Effect of Graphene Addition on Bacterial Cellulose-Based Nanocomposite. Journal of Mechanical Engineering Science and Technology (JMEST)., 6(2): 107-118 (2022). doi: 10.17977/um016v6i22022p107.
Arikibe, J. E., Lata, R., & Rohindra, D., Bacterial Cellulose/Chitosan Hydrogels Synthesized In situ for Biomedical Application. Journal of Applied Biosciences., 162(1): 16675–16693 (2021). doi: 10.35759/jabs.162.1.
Sankarganesh, P., Parthasarathy, V., Kumar, A. G., Ragu, S., Saraniya, M., Udayakumari, N., & Anbarasan, R., Preparation of Cellulose-PVA Blended Hydrogels for Wound Healing Applications With Controlled Release of the Antibacterial Drug: an In Vitro Anticancer Activity. Biomass Convers Biorefin., 1(1): 1-12 (2022). doi: 10.1007/s13399-022-02586-y.
Al-Mihyawi, R., & Al-Hussaini, N. A., Preparation and Characterization of Bacterial Cellulose/Natural Polymer Antibacterial Composites. International Journal of Research in Agricultural Sciences., 4(1): 2348-3997 (2017).
Xu, K., Qin, Y., Xu, T., Xie, X., Deng, J., Qi, J., & Huang, C., Combining Polymeric Membranes with Inorganic Woven Fabric: Towards the Continuous and Affordable Fabrication of a Multifunctional Separator for Lithium-Ion Battery. Journal of Membrane Science., 592(1): 1-9 (2019). doi: 10.1016/j.memsci.2019.117364.
Nuryati, R. Amalia, R., & Hairiyah, N., Pembuatan Komposit dari Limbah Plastik Polyethylene Terephthalate (PET) Berbasis Serat Alam Daun Pandan Laut (Pandanus tectorius). Jurnal Agroindustri., 10(2): 107-118 (2020). doi: 10.31186/j.agroind.10.2.107-117.
Mohamed, H. F. M., Hady, E. E. A., Moneim, M. M. Y., Bakr, M. A. M., Soliman, M. A. M., Shehata, M. G. H., & Ismail, M. A. T., Effect of Al2O3 on Nanostructure and Ion Transport Properties of PVA/PEG/SSA Polymer Electrolyte Membrane. Polymers., 14(19): 1-18 (2022). doi: 10.3390/polym14194029.
Shirkavad, S., & Moslehifard, E., Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins. J Dent Res Dent Clin Dent Prospects., 8(4): 197–203 (2014). doi: 10.5681/joddd.2014.036.
Susilo, B. D., Suryanto, H., & Aminnudin, A., Characterization of Bacterial Nanocellulose - Graphite Nanoplatelets Composite Films. Journal of Mechanical Engineering Science and Technology., 5(2): p. 145-154 (2021). doi: 10.17977/um016v5i22021p145.
Sarkono, S. Moeljopawiro, B. Setiaji, and L. Sembiring., Physicochemical Properties of Cellulose Produced by Bacterial Isolate Gluconacetobacter xylinus KRE-65 in Different Fermentation Methods,” AGRITECH., 35(4): 434–440 (2015). doi: 10.22146/agritech.9327.
Khalid, A., Ullah, H., Ul-Islam, M., Khan, R., Khan, S., Ahmad, F., Khan, T., & Wahid, F., Bacterial Cellulose-TiO2 Nanocomposites Promote Healing and Tissue Regeneration in Burn Mice Model. RSC Adv., 7(75): 47662–47668 (2017). doi: 10.1039/c7ra06699f.
Vo, T. V., Dang, T. H., & Chen, B. H., Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(Vinyl Alcohol)/Anthocyanin Extracted from Red Cabbage. Polymers (Basel)., 11(7): 1–12 (2019). doi: 10.3390/polym11071088.
Karim, S., Pardoyo, & Subagiyo, A., Sintesis dan Karakterisasi TiO2 Terdoping Nitrogen (N-Doped TiO2) dengan Metode Sol-Gel. Jurnal Kimia Sains dan Aplikasi., 19(2): 63–67 (2016). doi: 10.14710/jksa.19.2.63-67.
Li, F., Ma, H., Shen, C., Pan. Y., Zhang, Y., Liu, Y., Xu, C., & Wu, D., From the Accelerated Production of •OH Radicals to the Crosslinking of Polyvinyl Alcohol: The Role of Free Radicals Initiated by Persulfates. Appl Catal B., 258(1): 1-12 (2021). doi: 10.1016/j.apcatb.2020.119763.
Wang, S., Xie, K., & Tang, D., Benign Oxidation of PVA for Configuration of Reversible Polyketal Networks. Eur Polym J., 140(1): 1-8 (2020). doi: 10.1016/j.eurpolymj.2020.110050.
Liu, J., Zhang, Y., Li, H., Liu, C., Quan, P., & Fang, L., The Role of Hydrophilic/Hydrophobic Group Ratio of Polyvinyl Alcohol on The Miscibility of Amlodipine in Orodispersible Films: From Molecular Mechanism Study to Product Attributes. Int J Pharm., 630 (2023). doi: 10.1016/j.ijpharm.2022.122383.
Masood, S., Gulnar, L. D., Arshad, H., Rehman, W., & Atique, A., Preparation and Optical Characterization of Poly (Vinyl Alcohol) and Starch (Native And Modified) Blend Films. Journal of Polymer Research., 29(12): 1-17 (2022). doi: 10.1007/s10965-022-03332-8.
Abodif, A. M., Meng, L., Sanjrani, M., Ahmed, A. S. A., Belvett, N., Wei, Z. Z., & Ning. D., Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS Omega., 5(23): 13630–13640 (2020). doi: 10.1021/acsomega.0c00619.
Păvăloiu, R.D., Stoica-Guzun, A., & Dobre, T., Swelling Studies of Composite Hydrogels Based On Bacterial Cellulose and Gelatin. U P B Sci.Bull Series B., 77(1) 2015.
Basu, P., Saha, N., Alexandrova, R., & Saha, P., Calcium Phosphate Incorporated Bacterial Cellulose-Polyvinylpyrrolidone Based Hydrogel Scaffold: Structural Property and Cell Viability Study for Bone Regeneration Application. Polymers., 11(11): 1-24 (2019). doi: 10.3390/polym11111821.
Xiao, F., Chen, Z., Wei, Z., & Tian, L., Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Advanced Science., 7(6): 1-34 (2020). doi: 10.1002/advs.202001048.
Ortiz, D. G., Nouxet, M., Maréchal, W., Lorain, O., Deratani, A., & Pochat-Bohatier, C., Immobilization of Poly(Vinyl Pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate. Membranes (Basel)., 12(7): 1-17 (2022). doi: 10.3390/membranes12070664.
Czarnecka E., & Nowaczyk, J., Semi-Natural Superabsorbents Based on Starch-G-Poly(Acrylic Acid): Modification, Synthesis and Application. Polymers (Basel)., 12(8): 1-19 (2020). doi: 10.3390/polym12081794.
Khattab M. M., & Dahman, Y., Functionalized Bacterial Cellulose Nanowhiskers as Long-Lasting Drug Nanocarrier for Antibiotics and Anticancer Drugs. Canadian Journal of Chemical Engineering., 97(10): 2594–2607 (2019). doi: 10.1002/cjce.23566.
Paarakh, M., Jose, P., Setty, C., & Christoper, G., Release Kinetics-Concepts and Applications. International Journal of Pharmaceutical Research & Technology., 10(1): 12–21 (2018). doi: 10.31838/ijprt/08.01.02.
Liyaskina, E. V., Revin, V. V., Paramonova, E. N., Revina, N. V., & Kolesnikova, S. G., Bacterial Cellulose/Alginate Nanocomposite for Antimicrobial Wound Dressing. KnE Energy., 3(2): 202-211(2018). doi: 10.18502/ken.v3i2.1814.
Malmir, S., Karbalaei, A., Pourmadadi, M., Hamedi, J., Yazdian, F., & Navaee, M., Antibacterial Properties of a Bacterial Cellulose CQD-TiO2 Nanocomposite. Carbohydr Polym., 234(1): 1-10 (2020). doi: 10.1016/j.carbpol.2020.115835.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Please find the rights and licenses in Jurnal Riset Kimia (J. Ris. Kim). By submitting the article/manuscript of the article, the author(s) agree with this policy. No specific document sign-off is required.
1. License
The use the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution 4.0 International License.Â
2. Author(s)' Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
Under the Creative Commons license, the journal permits users to copy, distribute, and display the material for any purpose. Users will also need to attribute authors and J. Ris. Kim on distributing works in the journal and other media of publications.
4. Rights of Authors
Authors retain all their rights to the published works, such as (but not limited to) the following rights;
- Copyright and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in own future works, including lectures and books,
- The right to reproduce the article for own purposes,
- The right to self-archive the article,
- The right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
5. Co-Authorship
If the article was jointly prepared by more than one author, any authors submitting the manuscript warrants that he/she has been authorized by all co-authors to be agreed on this copyright and license notice (agreement) on their behalf, and agrees to inform his/her co-authors of the terms of this policy. J. Ris. Kim will not be held liable for anything that may arise due to the author(s) internal dispute. J. Ris. Kim will only communicate with the corresponding author.