Profile of a Composite Based on Bacterial Cellulose and Polyvinyl Alcohol as a Drug Release Matrix for Tetracycline Hydrochloride

Authors

  • Afif Dwi Sukmaningrum Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia
  • Emmy Yuanita Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia https://orcid.org/0000-0003-1610-7200
  • Ni Komang Tri Dharmayani Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia
  • Sudirman Sudirman Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia
  • Ni Made Sudewianingsih Biology Laboratory, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia
  • Maria Ulfa Chemistry Department, Faculty of Mathematics and Natural Science, University of Mataram, Mataram-NTB, Indonesia

DOI:

https://doi.org/10.25077/jrk.v15i2.692

Keywords:

bacterial cellulose, polyvinyl alcohol, graphite, TiO2, tetracycline hydrochloride

Abstract

Bacterial cellulose (BC) is a natural polymer with good mechanical properties and hydrophilicity. Polyvinyl alcohol (PVA) is a synthetic polymer widely used in medicine. Both have been researched for their potential in drug release and acceptance. This study aims to determine the role of BC and PVA as drug release matrices for tetracycline hydrochloride (TCH), with additional fillers such as graphite (G) and TiO2. The results showed that the composites with BC matrix had lower mechanical properties than those with PVA matrix, with tensile strength values of 6.4075 and 17.446 MPa, respectively. However, the BC matrix was superior in porosity and swelling ability. The drug release testing of TCH from the composites showed that the appropriate model to describe drug release in BC matrix composites was in zero order, while the PVA matrix was in first order. The antibacterial activity of the composites on both matrices was tested against Staphylococcus aureus. The results indicate that both composites have potential applications in promising biomedical fields.

References

Adepu, S. & Ramakrishna. S., Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules., 26(19): 1-45 (2021). doi: 10.3390/molecules26195905.

Rouabhia, M., Asselin, J., Tazi, N., Messaddeq, Y., Levinson, D., & Zhang, Z., Production of Biocompatible and Antimicrobial Bacterial Cellulose Polymers Functionalized by RGDC Grafting Groups and Gentamicin. ACS Appl Mater Interfaces., 6(3): 1439–1446 (2014). doi: 10.1021/am4027983.

Alavarse, A. C., Silva. F. W. O., Colque, J. T., Silva, V. M., Prieto, T., Venancio, E. C., & Bonvent, J. J., Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA And Chitosan For Wound Dressing. Materials Science and Engineering C., 77(1): 271–281(2017). doi: 10.1016/j.msec.2017.03.199.

Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Ariff, A. B., Saad, W. Z., Navaderi, M., & Mohamad, R., Production and Status of Bacterial Cellulose in Biomedical Engineering. Nanomaterials., 7(9): 1-26 (2017). doi: 10.3390/nano7090257.

Baker, M. I, Walsh, S. P., Schwartz, Z., & Boyan, B. D., A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials., 100 B(5): 1451–1457 (2012). doi: 10.1002/jbm.b.32694.

Leitão, A. F., Silva, J. P., Dourado, F. & Gama, M., Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite. Materials., 6(5): 1956–1966 (2013), doi: 10.3390/ma6051956.

Busuioc, C., Isopencu, G. O., & Deleanu, I. M., Bacterial Cellulose–Polyvinyl Alcohol Based Complex Composites for Controlled Drug Release. Applied Sciences (Switzerland)., 13(2):1–13(2023).doi: 10.3390/app13021015.

Shao, W., Liu, H., Wang, S., Wu, J., Huang, M., Min, H., & Liu, X., Controlled Release and Antibacterial Activity of Tetracycline Hydrochloride-Loaded Bacterial Cellulose Composite Membranes. Carbohydr Polym., 145(1): 114–120 (2016). doi: 10.1016/j.carbpol.2016.02.065.

Manurung, R., Simanjuntak, S., Sembiring, J., Zaluku, E. C., Napitupulu, R. A. M., & Sihombing, S., Analisa Kekuatan Bahan Komposit Yang Diperkuat Serat Bambu Menggunakan Resin Polyester dengan Memvariasikan Susunan Serat Secara Acak dan Lurus Memanjang. SjoME., 2(1): 28-35 (2020). doi: 10.36655/sprocket.v2il.296

Aritonang, H. F., Wulandari, R., & Wuntu, A. D., Synthesis and Characterization of Bacterial Cellulose/Nano-Graphite Nanocomposite Membranes. Macromol Symp., 391(1): 1–7 (2020). doi: 10.1002/masy.201900145.

Sharma, D., Kumari, M., & Dhayal, V., Fabrication and Characterization of Cellulose/PVA/TiO2 Nanocomposite Thin Film as a Photocatalyst. Materials Today: Proceedings., 43(1): 2970–2974 (2021). doi: 10.1016/j.matpr.2021.01.323.

Liauw, C. M., Vaidya, M., Slate, A. J., Hickey, N. A., Ryder, S., Periñán, E. M., McBain, A. J., Banks, C. E., Whitehead, A., Analysis of Cellular Damage Resulting from Exposure of Bacteria to Graphene Oxide and Hybrids Using Fourier Transform Infrared Spectroscopy. Antibiotics., 12(4): 1-20 (2023). doi: 10.3390/antibiotics12040776.

Pathakoti, K., Manubolu, M., & Hwang, H.-M., Effect of Size and Crystalline Phase of TiO2 Nanoparticles on Photocatalytic Inactivation of Escherichia coli. J Nanosci Nanotechnol., 19(12): 8172–8179 (2019). doi: 10.1166/jnn.2019.16757.

Zhang, L., Zheng, S., Zhong, L., Wang, Y., Zhang, X., & Xue, J., Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar-Nanosilver Antibacterial Composite Membranes. Applied Sciences (Switzerland)., 10(3): 1-13 (2020). doi: 10.3390/app10030752.

Maulana, J., Suryanto, H., & Aminnudin, Y., Effect of Graphene Addition on Bacterial Cellulose-Based Nanocomposite. Journal of Mechanical Engineering Science and Technology (JMEST)., 6(2): 107-118 (2022). doi: 10.17977/um016v6i22022p107.

Arikibe, J. E., Lata, R., & Rohindra, D., Bacterial Cellulose/Chitosan Hydrogels Synthesized In situ for Biomedical Application. Journal of Applied Biosciences., 162(1): 16675–16693 (2021). doi: 10.35759/jabs.162.1.

Sankarganesh, P., Parthasarathy, V., Kumar, A. G., Ragu, S., Saraniya, M., Udayakumari, N., & Anbarasan, R., Preparation of Cellulose-PVA Blended Hydrogels for Wound Healing Applications With Controlled Release of the Antibacterial Drug: an In Vitro Anticancer Activity. Biomass Convers Biorefin., 1(1): 1-12 (2022). doi: 10.1007/s13399-022-02586-y.

Al-Mihyawi, R., & Al-Hussaini, N. A., Preparation and Characterization of Bacterial Cellulose/Natural Polymer Antibacterial Composites. International Journal of Research in Agricultural Sciences., 4(1): 2348-3997 (2017).

Xu, K., Qin, Y., Xu, T., Xie, X., Deng, J., Qi, J., & Huang, C., Combining Polymeric Membranes with Inorganic Woven Fabric: Towards the Continuous and Affordable Fabrication of a Multifunctional Separator for Lithium-Ion Battery. Journal of Membrane Science., 592(1): 1-9 (2019). doi: 10.1016/j.memsci.2019.117364.

Nuryati, R. Amalia, R., & Hairiyah, N., Pembuatan Komposit dari Limbah Plastik Polyethylene Terephthalate (PET) Berbasis Serat Alam Daun Pandan Laut (Pandanus tectorius). Jurnal Agroindustri., 10(2): 107-118 (2020). doi: 10.31186/j.agroind.10.2.107-117.

Mohamed, H. F. M., Hady, E. E. A., Moneim, M. M. Y., Bakr, M. A. M., Soliman, M. A. M., Shehata, M. G. H., & Ismail, M. A. T., Effect of Al2O3 on Nanostructure and Ion Transport Properties of PVA/PEG/SSA Polymer Electrolyte Membrane. Polymers., 14(19): 1-18 (2022). doi: 10.3390/polym14194029.

Shirkavad, S., & Moslehifard, E., Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins. J Dent Res Dent Clin Dent Prospects., 8(4): 197–203 (2014). doi: 10.5681/joddd.2014.036.

Susilo, B. D., Suryanto, H., & Aminnudin, A., Characterization of Bacterial Nanocellulose - Graphite Nanoplatelets Composite Films. Journal of Mechanical Engineering Science and Technology., 5(2): p. 145-154 (2021). doi: 10.17977/um016v5i22021p145.

Sarkono, S. Moeljopawiro, B. Setiaji, and L. Sembiring., Physicochemical Properties of Cellulose Produced by Bacterial Isolate Gluconacetobacter xylinus KRE-65 in Different Fermentation Methods,” AGRITECH., 35(4): 434–440 (2015). doi: 10.22146/agritech.9327.

Khalid, A., Ullah, H., Ul-Islam, M., Khan, R., Khan, S., Ahmad, F., Khan, T., & Wahid, F., Bacterial Cellulose-TiO2 Nanocomposites Promote Healing and Tissue Regeneration in Burn Mice Model. RSC Adv., 7(75): 47662–47668 (2017). doi: 10.1039/c7ra06699f.

Vo, T. V., Dang, T. H., & Chen, B. H., Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(Vinyl Alcohol)/Anthocyanin Extracted from Red Cabbage. Polymers (Basel)., 11(7): 1–12 (2019). doi: 10.3390/polym11071088.

Karim, S., Pardoyo, & Subagiyo, A., Sintesis dan Karakterisasi TiO2 Terdoping Nitrogen (N-Doped TiO2) dengan Metode Sol-Gel. Jurnal Kimia Sains dan Aplikasi., 19(2): 63–67 (2016). doi: 10.14710/jksa.19.2.63-67.

Li, F., Ma, H., Shen, C., Pan. Y., Zhang, Y., Liu, Y., Xu, C., & Wu, D., From the Accelerated Production of •OH Radicals to the Crosslinking of Polyvinyl Alcohol: The Role of Free Radicals Initiated by Persulfates. Appl Catal B., 258(1): 1-12 (2021). doi: 10.1016/j.apcatb.2020.119763.

Wang, S., Xie, K., & Tang, D., Benign Oxidation of PVA for Configuration of Reversible Polyketal Networks. Eur Polym J., 140(1): 1-8 (2020). doi: 10.1016/j.eurpolymj.2020.110050.

Liu, J., Zhang, Y., Li, H., Liu, C., Quan, P., & Fang, L., The Role of Hydrophilic/Hydrophobic Group Ratio of Polyvinyl Alcohol on The Miscibility of Amlodipine in Orodispersible Films: From Molecular Mechanism Study to Product Attributes. Int J Pharm., 630 (2023). doi: 10.1016/j.ijpharm.2022.122383.

Masood, S., Gulnar, L. D., Arshad, H., Rehman, W., & Atique, A., Preparation and Optical Characterization of Poly (Vinyl Alcohol) and Starch (Native And Modified) Blend Films. Journal of Polymer Research., 29(12): 1-17 (2022). doi: 10.1007/s10965-022-03332-8.

Abodif, A. M., Meng, L., Sanjrani, M., Ahmed, A. S. A., Belvett, N., Wei, Z. Z., & Ning. D., Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS Omega., 5(23): 13630–13640 (2020). doi: 10.1021/acsomega.0c00619.

Păvăloiu, R.D., Stoica-Guzun, A., & Dobre, T., Swelling Studies of Composite Hydrogels Based On Bacterial Cellulose and Gelatin. U P B Sci.Bull Series B., 77(1) 2015.

Basu, P., Saha, N., Alexandrova, R., & Saha, P., Calcium Phosphate Incorporated Bacterial Cellulose-Polyvinylpyrrolidone Based Hydrogel Scaffold: Structural Property and Cell Viability Study for Bone Regeneration Application. Polymers., 11(11): 1-24 (2019). doi: 10.3390/polym11111821.

Xiao, F., Chen, Z., Wei, Z., & Tian, L., Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Advanced Science., 7(6): 1-34 (2020). doi: 10.1002/advs.202001048.

Ortiz, D. G., Nouxet, M., Maréchal, W., Lorain, O., Deratani, A., & Pochat-Bohatier, C., Immobilization of Poly(Vinyl Pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate. Membranes (Basel)., 12(7): 1-17 (2022). doi: 10.3390/membranes12070664.

Czarnecka E., & Nowaczyk, J., Semi-Natural Superabsorbents Based on Starch-G-Poly(Acrylic Acid): Modification, Synthesis and Application. Polymers (Basel)., 12(8): 1-19 (2020). doi: 10.3390/polym12081794.

Khattab M. M., & Dahman, Y., Functionalized Bacterial Cellulose Nanowhiskers as Long-Lasting Drug Nanocarrier for Antibiotics and Anticancer Drugs. Canadian Journal of Chemical Engineering., 97(10): 2594–2607 (2019). doi: 10.1002/cjce.23566.

Paarakh, M., Jose, P., Setty, C., & Christoper, G., Release Kinetics-Concepts and Applications. International Journal of Pharmaceutical Research & Technology., 10(1): 12–21 (2018). doi: 10.31838/ijprt/08.01.02.

Liyaskina, E. V., Revin, V. V., Paramonova, E. N., Revina, N. V., & Kolesnikova, S. G., Bacterial Cellulose/Alginate Nanocomposite for Antimicrobial Wound Dressing. KnE Energy., 3(2): 202-211(2018). doi: 10.18502/ken.v3i2.1814.

Malmir, S., Karbalaei, A., Pourmadadi, M., Hamedi, J., Yazdian, F., & Navaee, M., Antibacterial Properties of a Bacterial Cellulose CQD-TiO2 Nanocomposite. Carbohydr Polym., 234(1): 1-10 (2020). doi: 10.1016/j.carbpol.2020.115835.

Downloads

Published

2024-09-30

How to Cite

Sukmaningrum, A. D., Yuanita, E. ., Dharmayani, N. K. T., Sudirman, S., Sudewianingsih, N. M., & Ulfa, M. (2024). Profile of a Composite Based on Bacterial Cellulose and Polyvinyl Alcohol as a Drug Release Matrix for Tetracycline Hydrochloride. Jurnal Riset Kimia, 15(2), 84–96. https://doi.org/10.25077/jrk.v15i2.692

Issue

Section

Articles

Citation Check